Integrated Modeling Assessment in Wetlands: the Everglades

H. Carl Fitz Assistant Professor

Soil & Water Science Dept., Ft. Lauderdale Research & Education Center

University of Florida

March 2008

Ecological Landscape Modeling

Primary Everglades Landscape Model (ELM) Developers:

(Affiliations during primary collaboration)

	U. Maryland	SFWMD	USF&WS
Cornwell		•	
Costanza	•		
Fitz	•	•	
Godin		•	•
Maxwell	•		
Sklar		•	
Trimble		•	
Voinov	•		
Wang		•	
Waring		٠	

A Model Perspective of the Everglades Landscape: Regional & Subregional Applications of ELM

ELM outputs: regional, 1-km scale grid 20-yr summaries

Colors = habitats (red = cattail) Mountains = surface water phosphorus

ELM v2.4.3/v2.5.0

Ecological Landscape Modeling

Presentation:

1. Integrated modeling as synthesis

- **2.** Ecosystem processes in landscapes
 - a) Regional landscape hydrologic & nutrient drivers
 - b) Basin-scale landscape soil, plant processes
 - c) "Local"-scale landscape develop/maintain patterns
- 3. Future directions

Wetland Ecological Models: General Goal

Understand the ecological responses to varying magnitudes and frequencies of flooding

Wetland Ecological Models

Just what are they?

Ecological Landscape Modeling

Integrated Wetland Ecological Models

Just what are they?

http://ecolandmod.ifas.ufl.edu

Ecological Landscape Modeling

Spatial considerations

Complexity - Horizontal discretization

Everglades Landscape Model (ELM) Goals:

Develop a modeling tool for <u>integrated ecological assessment</u> of water management scenarios for Everglades restoration

- <u>Integrate</u> hydrology, biology, and nutrient cycling in spatially explicit, dynamic simulations
- <u>Synthesize</u> these interacting hydro-ecological processes at scales appropriate for regional assessments
- <u>Understand</u> and <u>predict</u> the relative responses of the landscape to different water and nutrient management scenarios
- Provide a <u>conceptual and quantitative framework</u> for collaborative field research and other modeling efforts

ELM Design: Integrating ecological interactions

- 1. Boxes change in response to each other
- 2. Arrows denote <u>simple model</u> <u>"mechanisms" of WHY</u> things change
- 3. Using simple "WHYs", model is not restricted to statistical "fits" of past behavior
- 4. Thus, <u>apply understanding to</u> <u>predict relative</u> performance of future restoration scenarios

Derived from GEM: General Ecosystem Model

ELM Design: Spatial interactions

Derived from CELSS: Coastal Ecological Landscape Spatial Simulation

Ecological Landscape Modeling

ELM Design: State Variables

Ecological Landscape Modeling

Patterns of Ecological Interactions

Ecological Landscape Modeling

Hyperlinked algorithm documentation

Ecological Landscape Modeling

Hyperlinked source code documentation

Presentation:

- **1.** Integrated modeling as synthesis
- **2.** Ecosystem processes in landscapes
 - a) Regional landscape hydrologic & nutrient drivers
 - b) Basin-scale landscape soil, plant processes
 - c) "Local"-scale landscape develop/maintain patterns
- 3. Future directions

Regional ELM Objectives (Application Niche): Specific Performance Measures

Approved¹ Performance Measures

Regional ELM v2.5, evaluations of: <u>Phosphorus</u>: concentration in surface water <u>Phosphorus</u>: accumulation in ecosystem

ELM v3.0, regional/subregional evaluations of: Soils: accretion, phosphorus content Periphyton: community type, biomass Macrophytes: community type, biomass

Performance Measure Scales – Regional Application <u>Temporal</u>: Annual trends over decadal time scales <u>Spatial</u>: 1-km resolution gradients across tens of km

¹CERP RECOVER, not final

Example Application: What might have happened if clean water had entered the Everglades in the past?

(hypothetical example)

Historical scenario, 1981-2000:

- actual flows
- actual (historical) phosphorus inflow concentrations

Hypothetical scenario, 1981-2000:

- actual flows
- <u>10 ug/L (ppb) phosphorus</u> inflow concentrations

<u>Use model to indicate the likely spatial reduction</u> in phosphorus impacts across the Greater Everglades, with lower inflow phosphorus concentrations

Example Application: What might have happened if clean water had entered the Everglades in the past?

Ecological Landscape Modeling

How well does ELM work?

Hydrology:

Consistency: Regional analysis of stage

median bias of predictions: marsh = 1 cm

Ecological Landscape Modeling

How well does ELM work?

<u>Hydrology</u>:

Consistency: Regional analysis of chloride "tracer"

median relative bias of predictions:

marsh = -12%

canals = 13%

Simulation of surface-water CL concentration

ELM v2.5 Performance Assessment

How well does ELM work?

Water Quality:

Regional analysis of surface water phosphorus (TP) concentration (Planning Application Performance Measure)

median bias of predictions: marsh = 2 ppb of TP canals = 4 ppb of TP

Simulation of surface-water TP concentration ELM v2.5 Performance Assessment

1981-2000, all-stations: median seasonal Bias in marshes= 2 ppb; in canals= 4 ppb

ELM v2.5.2

Ecological Landscape Modeling

Presentation:

- **1.** Integrated modeling as synthesis
- **2.** Ecosystem processes in landscapes
 - a) Regional landscape hydrologic & nutrient drivers
 - b) Basin-scale landscape soil, plant processes
 - c) "Local"-scale landscape develop/maintain patterns
- 3. Future directions

How well does ELM work?

Ecology:

Match gradients of phosphorus accumulation (Planning Application Performance Measure)

Ecology: Match gradients of soil peat accretion

ELM v2.5.2

ELM-WCA2 Subregional Project (ELMwca2_500m v2.5.0) Historical Simulation, 1981 - 2000

How well does ELM work?

<u>Ecology</u>:

Check patterns of other ecological variables

Presentation:

- **1.** Integrated modeling as synthesis
- **2.** Ecosystem processes in landscapes
 - a) Regional landscape hydrologic & nutrient drivers
 - b) Basin-scale landscape soil, plant processes
 - c) "Local"-scale landscape develop/maintain patterns
- 3. Future directions

Ecosystem processes in synthetic landscapes at century time scales

- 1. Utilize available data on habitats, topography
 - a) Central WCA-3A Ridge & Slough pattern of classified habitats
 - b) Generate "synthetic" topography from helicopter survey points
- 2. Apply current ELM v2.5 algorithms & parameters
 - a) New utilities for selectable (synthetic) overland flow & rainfall inputs
- 3. Evaluate process pattern interaction at century-scales
 - a) Extension of request by ELM Peer Review Panel
- 4. A very early work-in-progress!!

Question: Can we simulate how the landscape pattern is maintained?

Ecological Landscape Modeling

What pattern? (local scale patterns at << 1 km grid)

Landscape pattern ~evident at 250 m scale. Directional pattern clear at 125 m scale.

Ecological Landscape Modeling

The model applications

- 1. Develop two applications: 250 m and 125 m grid scale
- 2. "Nominal" conditions over 108-yr period
 - a) Concatenate 1965-2000 climate data (3 repeating sets)
 - b) Overland inflows that approximate 20% of long-term rainfall

	Rain in	Overland	Groundwater	ET	Overland	Groundwater
	(cm mon-1)	in (% rain)	in (% rain)	out (% rain)	out (% rain)	out (% rain)
Monthly mean, 108-yr Budget:	10.4	20%	0%	84%	34%	3%

Model Results

Elevation change:

Strong differential peat accretion between sloughs and ridges/tree islands

Phosphorus change:

Differential P accumulation between sloughs and ridges/tree islands

Model Results

Elevation change:

Bimodal (ridge vs. slough) accretion rates evolve over long time scales, perhaps tending towards some level of equilibrium (pending disturbances!)

Presentation:

- **1.** Integrated modeling as synthesis
- **2.** Ecosystem processes in landscapes
 - a) Regional landscape hydrologic & nutrient drivers
 - b) Basin-scale landscape soil, plant processes
 - c) "Local"-scale landscape develop/maintain patterns
- 3. Future directions

ELM Documentation & Review

Existing Documentation

- Open Source model (available on web site)
- Description of Everglades, <u>objectives and conceptual model</u>
- Verbal, mathematical, and graphical description of <u>algorithms</u>
- All <u>source code</u> functions & variables documented (automated)
- All input data documented, including "metadata"
- Numerical & graphical summaries of <u>calibration/validation</u>
- Comprehensive <u>sensitivity analysis</u>, aspects of uncertainty
- User's Guide

Peer Review

- Peer-reviewed science publications, 1996 2006
- Multi-agency review, 2002
- Independent peer review, July 2006 January 2007
 - Facilitated by V. Bierman, Limno-Tech/HydroQual
 - Expert Panel: L. Band, C. Cerco, W. Mitsch (chair)

Peer Review Project

Status:

- Panel's Final Report posted Jan 2007
 - ELM v2.5 is ready for application
 - Panel: ELM v2.5 is "...robust and will produce a unique contribution, with an integrated ecosystem paradigm, to understand and predict potential outcomes of Everglades restoration projects..."

Potential ELM applications

CERP Decompartmentalization:

- water-quality Performance Measures
- pending final project schedule

Long Term Plan for Achieving Water Quality Goals:

- water quality, soil/plant recovery from eutrophication
- pending determination of needs, schedules

Other:

- Assist in optimizing spatio-temporal scales for field sampling (per Peer Review Panel recommendation)
- Research: Model synthesis, hypothesis refinements

Models & research:

towards model synthesis...

Freshwater wetland systems:

- Variations in soil decomposition and accretion
- Floc-soil interactions
- Water column carbon sedimentation/resuspension

Mangrove/estuarine systems:

- Variations in soil decomposition and accretion
- Variations in nitrogen transformations

Freshwater-estuarine interactions:

 Model spatio-temporal extrapolations of freshwater-estuarine flux hypotheses (FCE LTER)