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7.1 Overview 
As we noted in the Introduction, Goals & Objectives Chapter, models are simple 
abstractions of reality, and may be used to guide our thinking.  Towards this end, it is 
vital that modelers and model users acknowledge and understand the uncertainties 
inherent in any model.   The topic of “Uncertainty” is broad, and a thorough treatment of 
it is well-beyond the scope of this documentation.  Instead, we refer the reader to the 
report of the “Comprehensive Everglades Restoration Plan’s Model Uncertainty 
Workshop” held in January 2002 (Lall et al. 2002).    

In the Uncertainty Workshop technical report, Lall et al. (2002) specifically 
recommended that the Everglades Landscape Model (ELM) developers repeat the 
methods of prior sensitivity analyses on the current ELM version.  In this chapter, we 
report on those results, and discuss their implications relative to model complexity.   

Hydrology and water quality are primary drivers of the Everglades ecology, and are 
likewise an important component of the ELM ecological dynamics.  Beyond the analysis 
of model sensitivity to parameter choices, we quantify the statistical expectations of the 
water quality performance metrics, which are highly dependent on the forces that drive 
the “boundaries” of the model.   Another important concern in water quality modeling is 
that of “numerical dispersion”, which is explicitly simulated in ELM (see Model 
Structure Chapter), and discussed here relative to model and data uncertainty. 

Finally, we touch upon another common topic in modeling: what is validation, and can 
modelers truly validate the model output?  The basic answer is “No”.  However, these 
model abstractions of reality have served useful purposes in better understanding system 
dynamics, and will continue to be important tools in aiding our decision-making process 
for uncertain topics such as understanding and restoring the Everglades. 
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7.2 Data uncertainty 
Uncertainty in the data used to parameterize a model, to “drive” a model, and to compare 
to model output (i.e., calibrate), is a major source of uncertainty in simulation modeling.  
This topic of data uncertainty in modeling is a broad one, and the reader is referred to the 
recent synthesis of uncertainty in Everglades modeling (Lall et al. 2002).  For this 
documentation Chapter, we present some important, specific considerations of the data 
uncertainty in water quality boundary conditions that drive much of the model dynamics. 

7.2.1 Boundary inflows 
As with any model, ELM simulations depend heavily on the forcing functions that drive 
the model.  The major forcing functions are rainfall, potential evapotranspiration, 
inflows/outflows at water control structures, and other data described in the Data Chapter. 
Much of the effort in building a model application is the collection and synthesis of data 
to accurately represent these processes. 

7.2.1.1 Nutrient sampling frequency 
Water control structures that input water and constituents into the model domain were 
usually located along the model domain boundary (see Data Chapter). For water control 
structures at domain inflows, the intended historical sampling frequencies for water 
quality parameters ranged from one week to one month.  However, at numerous of these 
locations, the time period between two consecutive samples often exceeded three months.  
Furthermore, at some stations (e.g., ACME1DS, with relatively minor inflow volumes) 
there were no observations of surface water TP concentration for the entire calibration 
period (1981-95). As described in the Data Chapter, missing values of flow and 
concentrations were filled in using several techniques, with linear interpolation between 
successive point samples. The use of linear interpolation between sampling events 
introduces additional error in prescribing model boundary conditions.  This additional 
error propagates throughout the model domain and impacts any model’s ability to 
replicate observed field conditions. Considering all available water quality sampling 
stations used in domain inflows, the mean TP sampling frequency for the period of record 
- when data were available - was 16 days.  

7.2.1.2 Model performance expectations 
The goodness of fit of these interpolated daily TP concentrations from the unknown true 
daily TP concentrations depends on how well the measured TP concentrations were 
linearly autocorrelated at each site.  Ideally, we should use statistical validation to 
evaluate uncertainty introduced by the interpolation, by splitting the entire dataset into 
two subsets, and then calculate the uncertainty between measured and interpolated data 
from the first subset and measured data from the second data set. This was not an option 
because TP concentrations were infrequently sampled at numerous stations. However, we 
can still use autocorrelation and cross-validation to assess the relative uncertainty 
introduced by linear interpolation. For example, the autocorrelation assesses how much 
correlation is present between successive measurements (assuming equi-spaced intervals 
between sampling events). Given N measurements, Yi at time Xi, the lag k 
autocorrelation function is defined as:  
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This autocorrelation function is a correlation coefficient between two values (i.e., Yi and 
Yi+k) of the same variable at times Xi and Xi+k. The first autocorrelation coefficient (lag 
1) equals 1.0 if the data are not random and totally autocorrelated. If the data set has no 
autocorrelation and is totally random, the resulting coefficient would equal zero. 
Interpolated daily TP concentrations from a non-autocorrelated (e.g., random) data set 
will not correlate with the unknown true TP concentrations on dates not sampled. 

Cross-validation removes each data point, one at a time, and interpolates the associated 
total phosphorus value with the rest of the data points. The interpolated and the actual 
measured values (at the locations of each omitted data point) are then compared. 

The calculated statistics from autocorrelation and cross-validation are presented in Table 
7.2.1 for all stations that have inflows into the model domain; i.e., those that are 
important drivers of surface water quality.  These statistics can be used as diagnostics to 
indicate the relative degree of uncertainty in model input data for total phosphorus 
loadings, and to help set appropriate expectations for model predictions using available 
input data. For TP concentrations used in ELM for domain inflow loads, the 
autocorrelation coefficients ranged from 0.04 to 0.56, with a mean of 0.32. The 
correlation coefficients from cross-validation are even lower, ranging from 0.001 to 0.45, 
with a mean of 0.20. Therefore, for any model that uses these input data, it is reasonable 
to expect that the goodness of fit between observed TP concentrations and model-
predicted daily values would not likely exceed the statistics calculated from 
autocorrelation and cross-validation of input data: the expectation of any model should 
not exceed a mean R2 = 0.20 and maximum R2 ≤ 0.45.  

While the cross-validation analysis indicates that the interpolated daily TP concentrations 
(using the best, state-approved method available) may not well-resemble the dynamic of 
the true unknown TP concentrations, but the biases estimated from cross-validation are 
all within the range of 1 ppb (ug L-1). This suggests that the interpolated daily TP 
concentrations can be used in developing unbiased estimates of the true (unknown) long 
term mean TP concentrations. Thus, for models that simulate TP dynamics from 
interpolated daily TP concentrations, calibration of simulated TP concentrations should 
seek to compare the aggregated mean of TP concentrations over a prolonged period, 
rather than point to point comparisons based on instantaneous observations of water 
column concentrations.  Given these temporal constraints imposed by the input forcing 
data, measures of temporally-aggregated statistical bias and root mean square error of 
model predictions can be used to demonstrate the degree to which the model captures the 
long term eutrophication in locations distributed across space. 
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7.2.2 Tables: data uncertainty 
 

Table 7.2.1. Results of autocorrelation and cross-validation of input data for TP 
concentrations at water control structures that have inflows into the model domain.  The 
text explains the methods used in the analyses; Bias and RMSE are in units of ug/L (ppb) 
of TP concentration. 

 
Sample Date Cross Validation 

Station 
Start End  

Number 
of Days 
Sampled 

Mean 
Sample 
Frequency 
(Day) Bias R2 RMSE EFF 

Autocorrelation  
function       
 (lag 1) 

ACME1DS 2/5/1997 12/18/2000 48 29 0.7 0.04 59 0.20 0.18 
ENR012 12/16/1993 12/28/2000 393 7 0.1 0.09 34 0.29 0.22 
G200 7/26/1989 12/27/2000 285 15 -0.7 0.26 42 0.49 0.31 
G310 6/1/2000 12/28/2000 30 7 0.3 0.45 14 0.66 0.52 
G94D 2/5/1997 12/18/2000 54 26 0.3 0.001 67 -0.03 0.04 
L28I 1/3/1979 10/16/2000 277 29 1.0 0.29 51 0.54 0.40 
L3BRS 10/30/1984 12/27/2000 217 27 0.2 0.45 65 0.66 0.56 
S140 1/3/1979 12/28/2000 431 19 0.4 0.36 57 0.59 0.46 
S150 1/2/1979 12/26/2000 359 22 0.9 0.04 57 0.21 0.18 
S175 5/2/1995 12/20/2000 150 14 0.0 0.10 3 0.31 0.26 
S18C 10/5/1983 12/20/2000 368 17 0.0 0.02 7 0.13 0.10 
S332 10/5/1983 12/20/2000 454 14 0.1 0.27 6 0.51 0.44 
S332D 6/16/1999 12/28/2000 94 6 0.0 0.21 4 0.44 0.37 
S5A 1/2/1979 12/28/2000 682 12 1.3 0.27 76 0.51 0.41 
S6 1/2/1979 12/28/2000 729 11 -0.4 0.22 73 0.45 0.34 
S7 1/2/1979 12/26/2000 674 12 1.3 0.14 66 0.37 0.30 
S8 1/2/1979 12/27/2000 782 10 1.3 0.33 81 0.57 0.48 
S9 1/3/1979 12/26/2000 518 15 0.0 0.07 15 0.25 0.18 
Mean   364 16 0.4 0.20 43 0.40 0.32 
Min   30 6 -0.7 0.001 3 -0.03 0.04 
Max   782 29 1.3 0.45 81 0.66 0.56 
STD DEV     243 8 0.6 0.14 28 0.19 0.15 
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7.3 Model sensitivity analyses 

7.3.1 Sensitivity analysis overview 
Simulation models are potentially powerful tools for ecological research and 
management, but their inherent uncertainties need to be properly evaluated for effective 
model utility.  A wide number of efforts using procedures of varying rigor have been 
undertaken to evaluate model performance for different objectives.  For process based 
models which employ numerous parameters in their equations, the accuracy of the 
parameter estimates can be a critical component of the model development.  Parameter 
estimation is a significant concern in determining the degree of certainty of the model 
output for use in understanding the system dynamics and making any useful predictions 
or forecasting.    

The ELM was developed in a hierarchical fashion, with a unit model at the ecosystem 
level that is coupled to spatial model drivers to flux water and constituents through canal 
vectors and raster cells in a landscape whose pattern may vary over time.  The unit model 
is replicated in each grid cell of the landscape and incorporates the fundamental 
hydrologic and ecological processes that dictate much of the model behavior.  With 
numerous parameters that are input to the model, the user needs to understand the relative 
influence of parameter variations on the model results.  The parameters range from rate 
coefficients to nutrient stoichiometric ratios and initial conditions (see Data Chapter).  
Some parameters are known with relatively high accuracy, while others are less 
understood and are the subject of ongoing research.  To understand how parameter 
uncertainties may affect the ELM dynamics and its interpretation, we performed the first 
of a suite of sensitivity analyses on the updated version of ELM.   

While the ELM has very fast run times1 for a model of its spatial and computational 
complexity, there is nevertheless a need to simplify the problem in order to undertake the 
hundreds of runs that are required to fully evaluate the model sensitivity.  The approach is 
an extension of our sensitivity analyses (Fitz et al. 1995) on an early development version 
of ELM.  Indeed, repeating our prior methods on the current version of ELM was a 
specific recommendation by Lall et al. (2002), who detailed the technical considerations 
of uncertainty in Everglades modeling for the Comprehensive Everglades Restoration 
Plan (CERP).  We continue to approach the task of evaluating the model sensitivity and 
communicating those results in a stepwise, hierarchical fashion in keeping with the model 
structure (described in the Model Structure Chapter).  

The conceptual model that underlies our method is shown in Figure 7.3.1. We consider 
several phases to fully evaluate model sensitivity to the parameters (including those that 
modify initial conditions): “Naive”, “Informed”, and “Smart”.    

Naive:  In the “Naive” phase, we evaluate parameter perturbations to an implementation 
of the model that is as simple as possible/desirable, assuming no a priori knowledge of 

                                                 
1  The regional ELM application (10,364 1km2 grid cells) takes slightly more than 3 minutes of 
real-time per year of simulation time (on a 2.66 GHz Intel-based laptop). 
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the model or data.  Each of the (entire set of) input parameters is adjusted by the same 
fixed percentage (one at a time), and the relative response of the Performance Measures 
are evaluated.  Any parameter that has an observable effect on the Performance Measures 
is identified as a potentially important parameter.   

Informed: Subsequently, the “Informed” phase is more knowledge-based,  wherein a 
priori knowledge of parameter values is considered.  For this phase, the subset of 
potentially important parameters that were identified in the Naive phase are more fully 
evaluated.  Instead of using arbitrary values, we make sensitivity runs using realistic 
ranges of parameter values, in order to more accurately quantify the relative uncertainty 
of model outcomes based upon available data. This “Informed” phase is conducted on the 
same, simple model implementation that was used previously.  As a result of the 
Informed phase, we identify the set of parameters that have significant (ecologically-
meaningful) effects on the Performance Measure outputs; these parameters are (likely to 
be) a subset of those identified in the first “Naive” phase.   

Smart:  Finally, the “Smart” phase uses the ecologically significant parameters identified 
in the Informed phase, but extends the evaluation into the full complexity of the regional 
model implementation, with the regional-Everglades water management infrastructure 
and heterogeneity of habitats.  Results of this phase may be used to better characterize the 
relative uncertainty of Performance Measures in model applications. 

The primary considerations are 1) the response time scales of the model output 
Performance Measures, 2) the spatial complexity of the simulation, and 3) the a priori 
knowledge of the parameter sensitivity.  We initiated the analyses using a relatively 
simple spatial implementation of ELM, and assume that we know nothing of the relative 
importance of any parameter.  The objective of the sensitivity analysis is to develop an 
advanced understanding of the model parameters that are most influential on the model 
Performance Measure(s) output of interest.  We seek to determine which parameters are 
most “important”, on which we should focus our efforts in data acquisition and synthesis.  
Alternatively, evaluation of the sensitivity results may indicate the need to better refine 
future model algorithms.  Regardless of the outcome for developers, the users of the 
model Performance Measures should be able to better understand and interpret results if 
we successfully summarize and communicate the results of the sensitivity analyses.   

7.3.1.1 Response time scales  
The most fundamental component of a sensitivity analysis is that of the objective 
function: what is the output that is of interest, and how is its response to perturbation 
(parameter change) measured?  The goals of ELM (Introduction and Objectives Chapter) 
involve the understanding and assessment of the principal ecological dynamics that 
collectively determine the landscape or habitat characteristics.  Ecosystems, and their 
depiction in ELM, encompass a rather wide range of time scales of response (Figure 
7.3.1).  Most hydrologic and surface water Performance Measures respond at scales on 
the order of hours to days.  The biological responses of periphyton and macrophyte 
communities generally exhibit dynamic change at scales ranging from weeks to months.  
Integrators of these Performances Measures are the soil dynamic responses (and habitat 
succession), whose dynamic changes are generally considered over multiple seasons or 
years.  An evaluation of the response of these Performance Measures to model 
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perturbations necessarily needs to consider not only the magnitude of the change, but also 
its relationship to the variability within the appropriate response time scale.   

For the current set of sensitivity analyses, we focused on the shorter time scales of 
hydrology and of water quality in surface and soil pore waters, which relate to the 
Performance Measures we support for ELM v2.5.  At different locations along hydro-
ecological gradients, the inherent variability of both of these hydrologic and water quality 
Performance Measures is large at relatively short time scales.  Very small changes in 
water depths and phosphorus concentrations are of interest in this analysis, while these 
dynamic attributes can easily span an order of magnitude of change at the spatial and 
temporal scales under consideration. 

7.3.1.2 Spatial complexity  
In our early sensitivity analyses (Fitz et al. 1995), we were able to isolate the “unit” 
model from its spatial framework for the first step in sensitivity analyses.  Because of 
subsequent changes to the model, we no longer can easily implement a non-spatial 
implementation of ELM that is identical to the algorithms and input forcing data within 
the spatial implementation.  However, the ELM is easily “scalable”, and thus we 
implemented a small subregional spatial version of ELM, with a total of only 449 active 
grid cells (vs. more than 10,000 in the regional implementation).  This subregional 
implementation encompassed the hydrologic basin of Water Conservation Area 2A 
(WCA-2A) at a 1 km2 grid scale.  This basin contains no internal canals or levees other 
than those along its boundaries.  Moreover, this implementation considered only the two 
habitat types of sawgrass and cattail, without the myriad of other habitats found in other 
portions of the greater Everglades (Figure 7.3.1). 

An important characteristic of Water Conservation Area 2A is the extreme eutrophication 
(and lesser hydrologic) gradient that extends along a ~10 km transect downstream of 
major water control structure (point) inflows in the northeast quadrant.  In order to 
evaluate the model sensitivity along this gradient, we considered seven Indicator Regions 
spanning its length.  Within each Indicator Region, the Performance Measure outputs 
characterize the ecological (including hydrologic and water quality) responses to 
changing conditions – such as those associated with parameter perturbations.  The 
aggregated whole-system (i.e., basin) response is part of this spatially explicit evaluation.   

For the current set of sensitivity analyses, we did not consider the regional ELM.  The 
latter implementation is the final component of the full sensitivity analysis suite, wherein 
we will consider the model sensitivity to the complex water management network and 
broader habitat mosaic (Figure 7.3.1).   

7.3.1.3 A priori knowledge of parameters 
Our approach was to initially assume that all parameters are important, i.e., that we have 
no a priori knowledge of the relative importance or sensitivity of any of the parameters.   
In this “Naive” phase of the analysis (Figure 7.3.1), we considered all parameters that are 
input to (and used by) the model from the parameter databases (see the Data Chapter for 
parameter descriptions).  In each sensitivity simulation, a single parameter was modified 
by a fixed percentage from its nominal value (i.e., that used in current calibration).  All 
other parameters were held at their nominal values.  An index of sensitivity of the 
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targeted Performance Measure was evaluated to determine if the parameter has any 
potential, large or small, to effect the model outcome at different spatial locations.  The 
goal of the Naive phase was to “weed out” the parameters that have virtually no effect on 
the Performance Measure(s).  This is an important component of the sensitivity analysis, 
as the foundation of the ELM is a generalized model of ecosystem dynamics, the General 
Ecosystem Model (Fitz et al. 1996).  Partly due to this generality, there are parameters 
that may not have an effect on the Everglades landscape implementation.  Moreover, 
some parameters may be somewhat important to macrophyte growth or habitat 
succession, but not affect hydrology or surface water quality to a measurable extent.  

The Naive phase of the analysis serves to identify the subset of the total parameter set 
that has some non-trivial effect on dynamics of the targeted Performance Measures. This 
phase has the potential to be highly informative to both users who want to become 
familiar with the model, and to developers who need some further guidance in which 
“coarse” adjustments of parameters may be useful in refining model performance.  
Because it significantly reduces the number of parameters under consideration, this 
component of the sensitivity analysis can be valuable for that purpose alone.  Moreover, 
the results from the Naive parameter-value perturbations can be used to ascertain the 
relative contributions of each parameter to model uncertainty, albeit potentially limited 
due to the naive choice of parameter changes (irrespective of the range that they may be 
known to take from field observations/experiments). 

In further phases, that were not completed for these sensitivity analyses, we use more 
realistic ranges of parameter values, as opposed to arbitrary increments.  Results from 
these phases provide more informed recommendations on the priorities for further data 
acquisition and synthesis, while also providing more quantitative evidence of the relative 
uncertainties associated with parameterization of the model.   

7.3.2 Model configuration 
The model was configured to simulate historical conditions inclusive of the years 1981 – 
1985.  The domain was that of the subregional ELM application in Water Conservation 
Area 2A, employing a 1 km2 grid mesh encompassing all of that Water Conservation 
Area.   The Indicator Regions used in model post-processing are shown in Figure 7.3.2.  
The vector topology of the canal/levee network and the point locations of water control 
structures were constant during the simulation period.  Habitat succession was “turned 
off”, while still having dynamic feedbacks associated with macrophyte growth/mortality 
within a constant habitat type.  Dynamic boundary conditions included data on rainfall, 
potential evapotranspiration, managed water control structure flows with associated 
constituent concentrations, and stage (along the borders of the domain).   

Full descriptions of the requisite data and the functionality of the source code is provided 
in Data and the Model Structure Chapters, respectively.  The Data Chapter includes the 
full documentation of the parameters, including definitions and units.  The User’s Guide 
Chapter describes the simple steps to invoke the automated suite of model sensitivity 
runs, with each run acquiring the appropriate (low, nominal, or high) value of the 
parameter from one of the three parameter files generated by both the HabParms and 
GlobalParms databases. In the case of the database containing habitat-specific parameters 
(that may have unique values for each habitat), the parameter change was maintained at 
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25% for each parameter in each habitat, with two habitats (sawgrass habitat #2 and cattail 
habitat #11) simulated in this implementation.  Each simulation was run for the 5-year 
period, and summarized for analysis by the mean daily value of each Performance 
Measure during entire simulation period.  For one invocation of a suite (e.g., hundreds) of 
sensitivity runs, a single output file summarizes all of the Performance Measures for all 
of the runs. 

7.3.3  Results  

7.3.3.1 Hydrology 
Table 7.3.1 lists all of the parameters that were evaluated, indicating whether a non-trivial 
(≥ 1%) hydrologic Performance Measure response was obtained for the ±25% parameter 
change.  Depending on the Indicator Region’s location along the gradient, changes to 
approximately 10 to 20 parameters2 showed at least a 1% change to the 5-year mean 
surface water depth Performance Measure, relative to the NOMINAL parameter set 
(Table 7.3.1).   Figure 7.3.3 shows the magnitude of the Performance Measure response 
for the twenty most-sensitive parameters, indicating that a many of these “top-20” 
consistently had relatively low effects across the spatial gradient. 

7.3.3.2 Surface water nutrients 
Table 7.3.2 lists all of the parameters that were evaluated, indicating whether a non-trivial 
(≥ 1%) surface water quality Performance Measure response was obtained for the ±25% 
parameter change.  Depending on the Indicator Region’s location along the gradient, 
changes to approximately 10 to 25 parameters3 showed at least a 1% change to the 5-year 
mean surface water phosphorus concentration Performance Measure, relative to the 
NOMINAL parameter set (Table 7.3.2).   Figure 7.3.4 shows the magnitude of the 
Performance Measure response for the twenty most-sensitive parameters, indicating that 
a many of these “top-20” consistently had relatively low effects across the spatial 
gradient.  Note that the lowest value output by the model is 0.001 mg TP•L-1 (1 ppb), 
which is well under the detection limit of field sampling. 

7.3.3.3 Soil nutrients 
Table 7.3.3 lists all of the parameters that were evaluated, indicating whether a non-trivial 
(≥ 1%) soil pore water quality Performance Measure response was obtained for the ±25% 
parameter change.  Depending on the Indicator Region’s location along the gradient, 
changes to approximately 30 to 60 parameters4 showed at least a 1% change to the 5-year 
mean soil pore water phosphorus concentration Performance Measure, relative to the 
NOMINAL parameter set (Table 7.3.3).   Figure 7.3.5 shows the magnitude of the 
Performance Measure response for the twenty most-sensitive parameters, indicating that 
even though a relatively large number of parameter changes produced a non-negligible 
                                                 
2  Note that the total count summary shown on the final row of each Table usually includes Performance 
Measure threshold responses to both high and low values of a particular parameter. 
3  Note that the total count summary shown on the final row of each Table usually includes Performance 
Measure threshold responses to both high and low values of a particular parameter. 
4  Note that the total count summary shown on the final row of each Table usually includes Performance 
Measure threshold responses to both high and low values of a particular parameter. 
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response, perhaps only the “top-10” of this group had potentially significant effects 
across the spatial gradient.    

7.3.4 Discussion 
In this “Naive” phase of a three-part analysis, the sensitivity of the hydrologic and water 
quality Performance Measures varied spatially, and some parameters had relatively 
specific effects on specific Performance Measures, as expected.  The parameter 
requirements increased, along with the sensitivity of the model to those parameters, as we 
considered physical hydrology, then surface water quality, and finally soil pore water 
quality.  Each of these ecological dynamics are critical to understanding the system, and 
they respectively increase in process complexity due to their increased integration of 
more complete ecosystem properties.   

Of particular interest in this analysis is the prioritization of data needs: from this initial 
perspective, which parameters were most “important”, and thus should be focused on in 
better parameterizing the model?  Table 7.3.4 summarizes the answer at this point.  The 
results in the table include the parameters which appeared in the “top 20” of any 
Performance Measure, and show which of the parameters had effects across more than 
one Performance Measure.  While the associated “State of our knowledge” of the data 
behind each parameter varies in quality, all are supported by existing studies or 
supportable by aggregations of our understanding of Everglades ecosystem dynamics.  
This is not meant to imply that the data are constrained to anything close to an “ideal” 
state of knowledge.  It does represent a useful perspective of our current understanding, 
and where we should put our resources to “do better”. 

For the next phase of the full sensitivity analysis,  we will further evaluate the model-
influence of the subset of parameters that were identified here as potentially (or certainly) 
important.  In this next “Informed” Phase, we will assign parameter values within a 
realistic range that is supported by observations, scaled/aggregated as best as possible 
using either quantitative methods or science-based inference if necessary.  In advancing 
in this straightforward process, we will better constrain the input data to match our true 
knowledge of the system, and use the results to communicate a better understanding of 
the model performance. 

The ELM has a “large” number of parameters due to its objectives of simulating 
integrated ecosystem dynamics across a spatially distributed, heterogeneous landscape.  
Furthermore, an early and fundamental objective of the modeling project was that of 
generality: a) the ecological dynamics were designed to be applicable across ecosystems 
in other regions, and b) code and parameters were generated to allow flexibility in 
implementation and analysis.  These latter attributes of the ELM modeling system 
increase the “apparent” parameter complexity: a naive, simple count of the number of 
parameters contained in databases is not reflective of the number that are used in critical 
algorithm calculations, and thus represent critical data needs.  As indicated in the results 
of this Naive phase of the ELM sensitivity analysis, the actual complexity induced by 
parameterization (i.e., data) needs is reasonable, and reflective of the basic properties of 
the integrated ecosystems - meaning that it is generally supported by available data and 
ongoing research.  An important part of our future work is continued synthesis of 
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research data, including the collaboration in design of field and lab experiments to help 
better understand these basic ecosystem properties within the Everglades landscape. 
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7.3.5 Tables: sensitivity analyses 
Four tables follow on the next 7 pages.   



Table 7.3.1, p. 1 of 2

Table 7.3.1. Hydrology.  Naive case: +/-25% change in parameter.  Compared to the  5-yr mean of the NOMINAL run output, 
if a simulation with a changed parameter resulted in at least a 1% change in the surface water depth Performance 
Measure in an Indicator Region (IR), the (ParmChangeRun - NominalRun) difference (meters) is shown for that simulation  & IR.  
Parameters are grouped by ecological module (as found in databases).

   SfWat_9    SfWat_8    SfWat_7    SfWat_6    SfWat_5    SfWat_4    SfWat_3    SfWat_2    SfWat_0
NOMINAL 0.22 0.217 0.19 0.196 0.191 0.199 0.207 0.191 0.191
GP_SOLOMEGA_LO
GP_SOLOMEGA_HI
GP_ALTIT_LO
GP_ALTIT_HI
GP_LATDEG_LO
GP_LATDEG_HI
GP_mannDepthPow_LO -0.003 -0.005 -0.009 -0.013 -0.016 -0.018 -0.023 -0.003 -0.003
GP_mannDepthPow_HI 0.007 0.009 0.015 0.019 0.021 0.021 0.026 0.007 0.007
GP_mannHeadPow_LO -0.004 -0.007 -0.010 -0.012 -0.016 -0.002 -0.002
GP_mannHeadPow_HI 0.004 0.005 0.009 0.013 0.015 0.016 0.019 0.004 0.004
GP_calibGWat_LO 0.021 0.020 0.016 0.013 0.011 0.010 0.006 0.016 0.016
GP_calibGWat_HI -0.014 -0.013 -0.010 -0.008 -0.007 -0.007 -0.003 -0.010 -0.010
GP_IDW_pow_LO
GP_IDW_pow_HI
GP_calibET_LO 0.223 0.216 0.193 0.177 0.162 0.151 0.119 0.192 0.192
GP_calibET_HI -0.077 -0.071 -0.055 -0.048 -0.043 -0.042 -0.034 -0.065 -0.065
GP_HYD_IC_SFWAT_ADD_LO
GP_HYD_IC_SFWAT_ADD_HI
GP_HYD_IC_UNSAT_ADD_LO
GP_HYD_IC_UNSAT_ADD_HI
GP_HYD_ICUNSATMOIST_LO
GP_HYD_ICUNSATMOIST_HI
GP_DetentZ_LO
GP_DetentZ_HI
GP_MinCheck_LO
GP_MinCheck_HI
GP_dispLenRef_LO
GP_dispLenRef_HI
GP_dispParm_LO
GP_dispParm_HI
GP_SLRise_LO
GP_SLRise_HI
GP_ALG_IC_MULT_LO
GP_ALG_IC_MULT_HI
GP_alg_uptake_coef_LO
GP_alg_uptake_coef_HI
GP_ALG_SHADE_FACTOR_LO
GP_ALG_SHADE_FACTOR_HI
GP_algMortDepth_LO
GP_algMortDepth_HI
GP_ALG_RC_MORT_DRY_LO
GP_ALG_RC_MORT_DRY_HI
GP_ALG_RC_MORT_LO 0.002
GP_ALG_RC_MORT_HI -0.002
GP_ALG_RC_PROD_LO
GP_ALG_RC_PROD_HI
GP_ALG_RC_RESP_LO
GP_ALG_RC_RESP_HI
GP_alg_R_accel_LO 0.003
GP_alg_R_accel_HI -0.003
GP_AlgComp_LO
GP_AlgComp_HI
GP_ALG_REF_MULT_LO
GP_ALG_REF_MULT_HI
GP_NC_ALG_KS_P_LO
GP_NC_ALG_KS_P_HI
GP_alg_alkP_min_LO
GP_alg_alkP_min_HI
GP_C_ALG_KS_P_LO
GP_C_ALG_KS_P_HI
GP_ALG_TEMP_OPT_LO
GP_ALG_TEMP_OPT_HI 0.002 0.003
GP_C_ALG_threshTP_LO -0.003 -0.005 -0.003
GP_C_ALG_threshTP_HI 0.004
GP_ALG_C_TO_OM_LO -0.004 -0.003
GP_ALG_C_TO_OM_HI 0.002
GP_alg_light_ext_coef_LO
GP_alg_light_ext_coef_HI
GP_ALG_LIGHT_SAT_LO
GP_ALG_LIGHT_SAT_HI
GP_ALG_PC_LO
GP_ALG_PC_HI
GP_DOM_RCDECOMP_LO
GP_DOM_RCDECOMP_HI
GP_DOM_DECOMPRED_LO
GP_DOM_DECOMPRED_HI
GP_calibDecomp_LO
GP_calibDecomp_HI
GP_DOM_decomp_coef_LO 0.004 0.007
GP_DOM_decomp_coef_HI
GP_DOM_DECOMP_POPT_LO 0.002 0.005
GP_DOM_DECOMP_POPT_HI
GP_sorbToTP_LO
GP_sorbToTP_HI
GP_IC_BATHY_MULT_LO
GP_IC_BATHY_MULT_HI
GP_IC_TPtoSOIL_MULT_LO
GP_IC_TPtoSOIL_MULT_HI
GP_IC_DOM_BD_MULT_LO -0.002 -0.005 -0.003
GP_IC_DOM_BD_MULT_HI 0.002
GP_IC_BulkD_MULT_LO
GP_IC_BulkD_MULT_HI
GP_IC_ELEV_MULT_LO 0.011 0.015 0.020 0.018 0.018 0.014 0.014 0.007 0.007
GP_IC_ELEV_MULT_HI -0.014 -0.018 -0.020 -0.017 -0.017 -0.014 -0.012 -0.007 -0.007
GP_MAC_IC_MULT_LO 0.004 0.004 0.003 0.003 0.002 0.004 0.004
GP_MAC_IC_MULT_HI -0.004 -0.003 -0.002 -0.003 -0.003
GP_MAC_REFUG_MULT_LO
GP_MAC_REFUG_MULT_HI
GP_mac_uptake_coef_LO 0.003
GP_mac_uptake_coef_HI 0.002 0.002
GP_mann_height_coef_LO -0.003 -0.004 -0.005 -0.006 -0.008
GP_mann_height_coef_HI 0.003 0.005 0.006 0.006 0.007 0.007
GP_Floc_BD_LO
GP_Floc_BD_HI
GP_FlocMax_LO
GP_FlocMax_HI
GP_TP_P_OM_LO
GP_TP_P_OM_HI
GP_Floc_rcSoil_LO
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GP_Floc_rcSoil_HI
GP_TP_DIFFCOEF_LO
GP_TP_DIFFCOEF_HI
GP_TP_K_INTER_LO
GP_TP_K_INTER_HI
GP_TP_K_SLOPE_LO
GP_TP_K_SLOPE_HI
GP_WQMthresh_LO
GP_WQMthresh_HI
GP_PO4toTP_LO 0.003
GP_PO4toTP_HI -0.002
GP_TP_IN_RAIN_LO
GP_TP_IN_RAIN_HI
GP_PO4toTPint_LO
GP_PO4toTPint_HI
GP_TP_ICSFWAT_LO
GP_TP_ICSFWAT_HI
GP_TP_ICSEDWAT_LO
GP_TP_ICSEDWAT_HI
GP_TPpart_thresh_LO
GP_TPpart_thresh_HI
GP_TP_DIFFDEPTH_LO
GP_TP_DIFFDEPTH_HI
GP_settlVel_LO
GP_settlVel_HI
HP_ALG_MAX_LO 0.002
HP_ALG_MAX_HI -0.002
HP_DOM_MAXDEPTH_LO
HP_DOM_MAXDEPTH_HI
HP_DOM_AEROBTHIN_LO
HP_DOM_AEROBTHIN_HI
HP_TP_CONC_GRAD_LO
HP_TP_CONC_GRAD_HI
HP_SALT_ICSEDWAT_LO
HP_SALT_ICSEDWAT_HI
HP_SALT_ICSFWAT_LO
HP_SALT_ICSFWAT_HI
HP_PHBIO_MAX_LO
HP_PHBIO_MAX_HI
HP_NPHBIO_MAX_LO
HP_NPHBIO_MAX_HI
HP_MAC_MAXHT_LO -0.003 -0.004 -0.005 -0.006 -0.008
HP_MAC_MAXHT_HI 0.003 0.005 0.006 0.006 0.007 0.007
HP_NPHBIO_ROOTDEPTH_LO 0.003 0.004 0.003 0.003 0.002 0.002 0.003 0.003
HP_NPHBIO_ROOTDEPTH_HI -0.004 -0.004 -0.003 -0.002 -0.003 -0.003 -0.003 -0.003
HP_MAC_MAXROUGH_LO -0.002 -0.003 -0.004 -0.005
HP_MAC_MAXROUGH_HI 0.002 0.002 0.003 0.004
HP_MAC_MINROUGH_LO -0.005 -0.004 -0.004 -0.005 -0.005 -0.005 -0.004 -0.002 -0.002
HP_MAC_MINROUGH_HI 0.004 0.004 0.005 0.006 0.005 0.005 0.005 0.002 0.002
HP_MAC_MAXLAI_LO 0.006 0.006 0.006 0.005 0.004 0.004 0.003 0.006 0.006
HP_MAC_MAXLAI_HI -0.006 -0.005 -0.004 -0.004 -0.004 -0.003 -0.005 -0.005
HP_MAC_MAXCANOPCOND_LO
HP_MAC_MAXCANOPCOND_HI
HP_MAC_CANOPDECOUP_LO
HP_MAC_CANOPDECOUP_HI
HP_MAC_TEMPOPT_LO
HP_MAC_TEMPOPT_HI
HP_MAC_LIGHTSAT_LO
HP_MAC_LIGHTSAT_HI
HP_MAC_KSP_LO
HP_MAC_KSP_HI
HP_PHBIO_RCNPP_LO
HP_PHBIO_RCNPP_HI
HP_PHBIO_RCMORT_LO 0.002 0.003
HP_PHBIO_RCMORT_HI -0.002
HP_MAC_WAT_TOLER_LO
HP_MAC_WAT_TOLER_HI
HP_MAC_SALIN_THRESH_LO
HP_MAC_SALIN_THRESH_HI
HP_PHBIO_IC_CTOOM_LO
HP_PHBIO_IC_CTOOM_HI
HP_NPHBIO_IC_CTOOM_LO
HP_NPHBIO_IC_CTOOM_HI
HP_PHBIO_IC_PC_LO
HP_PHBIO_IC_PC_HI
HP_NPHBIO_IC_PC_LO
HP_NPHBIO_IC_PC_HI
HP_MAC_TRANSLOC_RC_LO
HP_MAC_TRANSLOC_RC_HI
HP_HYD_RCINFILT_LO
HP_HYD_RCINFILT_HI
HP_HYD_SPEC_YIELD_LO 0.018 0.017 0.013 0.011 0.009 0.009 0.004 0.014 0.014
HP_HYD_SPEC_YIELD_HI -0.016 -0.015 -0.012 -0.009 -0.008 -0.008 -0.004 -0.013 -0.013
HP_HYD_POROSITY_LO 0.006 0.006 0.005 0.005 0.004 0.003 0.003 0.005 0.005
HP_HYD_POROSITY_HI -0.006 -0.006 -0.005 -0.004 -0.004 -0.004 -0.003 -0.005 -0.005
HP_FLOC_IC_LO
HP_FLOC_IC_HI
HP_FLOC_IC_CTOOM_LO
HP_FLOC_IC_CTOOM_HI
HP_FLOC_IC_PC_LO
HP_FLOC_IC_PC_HI
HP_SfDepthLo_LO
HP_SfDepthLo_HI
HP_SfDepthHi_LO
HP_SfDepthHi_HI
HP_SfDepthInt_LO
HP_SfDepthInt_HI
HP_PhosLo_LO
HP_PhosLo_HI
HP_PhosHi_LO
HP_PhosHi_HI
HP_PhosInt_LO
HP_PhosInt_HI
HP_FireInt_LO
HP_FireInt_HI

Count: 21 23 26 27 30 44 31 23 23
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Table 2 p. 1 of 2Table 7.3.2. Surface water TP.  Naive case: +/-25% change in parameter.  Compared to the  5-yr mean of the NOMINAL run output, 
if a simulation with a changed parameter resulted in at least a 1% change in the surface water TP concentration Performance 
Measure in an Indicator Region (IR), the (ParmChangeRun - NominalRun) difference (mg/L) is shown for that simulation & IR.  
Parameters are grouped by ecological module (as found in databases).

    TPsf_9     TPsf_8     TPsf_7     TPsf_6     TPsf_5     TPsf_4     TPsf_3     TPsf_2     TPsf_0
NOMINAL 0.005 0.007 0.009 0.012 0.014 0.019 0.019 0.008 0.008
GP_SOLOMEGA_LO
GP_SOLOMEGA_HI
GP_ALTIT_LO
GP_ALTIT_HI
GP_LATDEG_LO
GP_LATDEG_HI
GP_mannDepthPow_LO 0.001
GP_mannDepthPow_HI -0.001 -0.001 -0.001
GP_mannHeadPow_LO 0.001
GP_mannHeadPow_HI
GP_calibGWat_LO
GP_calibGWat_HI
GP_IDW_pow_LO
GP_IDW_pow_HI
GP_calibET_LO -0.001 -0.001 0.001
GP_calibET_HI -0.001 -0.001 -0.001
GP_HYD_IC_SFWAT_ADD_LO
GP_HYD_IC_SFWAT_ADD_HI
GP_HYD_IC_UNSAT_ADD_LO
GP_HYD_IC_UNSAT_ADD_HI
GP_HYD_ICUNSATMOIST_LO
GP_HYD_ICUNSATMOIST_HI
GP_DetentZ_LO
GP_DetentZ_HI
GP_MinCheck_LO
GP_MinCheck_HI
GP_dispLenRef_LO 0.001 0.001
GP_dispLenRef_HI 0.001 -0.001
GP_dispParm_LO 0.001 -0.001
GP_dispParm_HI 0.001 0.001
GP_SLRise_LO
GP_SLRise_HI
GP_ALG_IC_MULT_LO
GP_ALG_IC_MULT_HI
GP_alg_uptake_coef_LO -0.001 -0.002 -0.001 -0.002 -0.001 -0.002 -0.002 -0.002 -0.002
GP_alg_uptake_coef_HI 0.002 0.001 0.002 0.001 0.002 0.002 0.002 0.001 0.001
GP_ALG_SHADE_FACTOR_LO
GP_ALG_SHADE_FACTOR_HI
GP_algMortDepth_LO
GP_algMortDepth_HI
GP_ALG_RC_MORT_DRY_LO
GP_ALG_RC_MORT_DRY_HI
GP_ALG_RC_MORT_LO 0.001 0.001 0.001 0.001 0.001
GP_ALG_RC_MORT_HI -0.001 -0.001 -0.001 -0.001
GP_ALG_RC_PROD_LO 0.001 0.001 0.001 0.001
GP_ALG_RC_PROD_HI
GP_ALG_RC_RESP_LO
GP_ALG_RC_RESP_HI
GP_alg_R_accel_LO 0.001 0.001 0.001 0.002 0.001
GP_alg_R_accel_HI -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
GP_AlgComp_LO 0.001 0.001 0.001
GP_AlgComp_HI
GP_ALG_REF_MULT_LO
GP_ALG_REF_MULT_HI
GP_NC_ALG_KS_P_LO
GP_NC_ALG_KS_P_HI
GP_alg_alkP_min_LO 0.001
GP_alg_alkP_min_HI
GP_C_ALG_KS_P_LO -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
GP_C_ALG_KS_P_HI 0.001 0.001 0.001 0.001 0.001
GP_ALG_TEMP_OPT_LO -0.001 -0.001 -0.001
GP_ALG_TEMP_OPT_HI 0.001 0.001 0.001 0.002
GP_C_ALG_threshTP_LO -0.001 -0.001 -0.001 -0.002 -0.002 -0.001 -0.001
GP_C_ALG_threshTP_HI 0.001 0.001 0.002 0.002 0.002
GP_ALG_C_TO_OM_LO
GP_ALG_C_TO_OM_HI
GP_alg_light_ext_coef_LO
GP_alg_light_ext_coef_HI
GP_ALG_LIGHT_SAT_LO
GP_ALG_LIGHT_SAT_HI
GP_ALG_PC_LO 0.001 0.001 0.001 0.001 0.002 0.002 0.001
GP_ALG_PC_HI -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
GP_DOM_RCDECOMP_LO -0.001 -0.001 -0.001
GP_DOM_RCDECOMP_HI 0.001 0.001 0.002 0.003
GP_DOM_DECOMPRED_LO
GP_DOM_DECOMPRED_HI 0.001
GP_calibDecomp_LO -0.001 -0.001 -0.001
GP_calibDecomp_HI 0.001 0.001 0.002 0.003
GP_DOM_decomp_coef_LO 0.001 0.001 0.001 0.001 0.003 0.006 0.007 0.001 0.001
GP_DOM_decomp_coef_HI -0.001 -0.001 -0.001 -0.002 -0.001 -0.001
GP_DOM_DECOMP_POPT_LO 0.001 0.001 0.004 0.006
GP_DOM_DECOMP_POPT_HI
GP_sorbToTP_LO
GP_sorbToTP_HI
GP_IC_BATHY_MULT_LO
GP_IC_BATHY_MULT_HI
GP_IC_TPtoSOIL_MULT_LO -0.001 -0.001
GP_IC_TPtoSOIL_MULT_HI 0.001 0.001 0.001 0.001
GP_IC_DOM_BD_MULT_LO
GP_IC_DOM_BD_MULT_HI
GP_IC_BulkD_MULT_LO -0.001
GP_IC_BulkD_MULT_HI 0.001 0.001 0.001
GP_IC_ELEV_MULT_LO
GP_IC_ELEV_MULT_HI 0.001
GP_MAC_IC_MULT_LO 0.001 0.001
GP_MAC_IC_MULT_HI
GP_MAC_REFUG_MULT_LO
GP_MAC_REFUG_MULT_HI
GP_mac_uptake_coef_LO -0.001 -0.001 -0.001 -0.002 -0.001 -0.001
GP_mac_uptake_coef_HI 0.001 0.001 0.001 0.002 0.003
GP_mann_height_coef_LO 0.001
GP_mann_height_coef_HI
GP_Floc_BD_LO
GP_Floc_BD_HI
GP_FlocMax_LO
GP_FlocMax_HI
GP_TP_P_OM_LO
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GP_Floc_rcSoil_LO 0.001 0.001 0.001
GP_Floc_rcSoil_HI
GP_TP_DIFFCOEF_LO
GP_TP_DIFFCOEF_HI 0.001
GP_TP_K_INTER_LO 0.001 0.001 0.001
GP_TP_K_INTER_HI
GP_TP_K_SLOPE_LO
GP_TP_K_SLOPE_HI
GP_WQMthresh_LO
GP_WQMthresh_HI
GP_PO4toTP_LO -0.001 -0.001 -0.001 -0.002 -0.001 -0.002 -0.002 -0.001 -0.001
GP_PO4toTP_HI 0.002 0.002 0.002 0.001 0.002 0.002 0.002 0.001 0.001
GP_TP_IN_RAIN_LO -0.001 -0.001 -0.001
GP_TP_IN_RAIN_HI 0.001 0.001 0.001 0.001 0.001 0.001
GP_PO4toTPint_LO 0.001 0.001 0.001
GP_PO4toTPint_HI -0.001
GP_TP_ICSFWAT_LO
GP_TP_ICSFWAT_HI
GP_TP_ICSEDWAT_LO
GP_TP_ICSEDWAT_HI
GP_TPpart_thresh_LO -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001
GP_TPpart_thresh_HI 0.001 0.001 0.001 0.001 0.002 0.001 0.001 0.001 0.001
GP_TP_DIFFDEPTH_LO 0.001
GP_TP_DIFFDEPTH_HI
GP_settlVel_LO 0.001 0.001 0.001 0.001 0.001 0.001
GP_settlVel_HI -0.001 -0.001 -0.001
HP_ALG_MAX_LO 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.001 0.001
HP_ALG_MAX_HI -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
HP_DOM_MAXDEPTH_LO 0.001
HP_DOM_MAXDEPTH_HI
HP_DOM_AEROBTHIN_LO
HP_DOM_AEROBTHIN_HI 0.001 0.001 0.001 0.001
HP_TP_CONC_GRAD_LO
HP_TP_CONC_GRAD_HI
HP_SALT_ICSEDWAT_LO
HP_SALT_ICSEDWAT_HI
HP_SALT_ICSFWAT_LO
HP_SALT_ICSFWAT_HI
HP_PHBIO_MAX_LO 0.001 0.001 0.001 0.001
HP_PHBIO_MAX_HI -0.001 -0.001
HP_NPHBIO_MAX_LO
HP_NPHBIO_MAX_HI
HP_MAC_MAXHT_LO 0.001 0.001
HP_MAC_MAXHT_HI
HP_NPHBIO_ROOTDEPTH_LO
HP_NPHBIO_ROOTDEPTH_HI
HP_MAC_MAXROUGH_LO 0.001
HP_MAC_MAXROUGH_HI
HP_MAC_MINROUGH_LO
HP_MAC_MINROUGH_HI
HP_MAC_MAXLAI_LO 0.001 0.001
HP_MAC_MAXLAI_HI
HP_MAC_MAXCANOPCOND_LO
HP_MAC_MAXCANOPCOND_HI
HP_MAC_CANOPDECOUP_LO
HP_MAC_CANOPDECOUP_HI
HP_MAC_TEMPOPT_LO -0.001 -0.001 -0.001 -0.002 -0.001 -0.001
HP_MAC_TEMPOPT_HI 0.001 0.001 0.001 0.002
HP_MAC_LIGHTSAT_LO
HP_MAC_LIGHTSAT_HI
HP_MAC_KSP_LO
HP_MAC_KSP_HI 0.001 0.001
HP_PHBIO_RCNPP_LO 0.001 0.001 0.001 0.001
HP_PHBIO_RCNPP_HI -0.001 -0.001
HP_PHBIO_RCMORT_LO
HP_PHBIO_RCMORT_HI 0.001
HP_MAC_WAT_TOLER_LO
HP_MAC_WAT_TOLER_HI
HP_MAC_SALIN_THRESH_LO
HP_MAC_SALIN_THRESH_HI
HP_PHBIO_IC_CTOOM_LO
HP_PHBIO_IC_CTOOM_HI
HP_NPHBIO_IC_CTOOM_LO
HP_NPHBIO_IC_CTOOM_HI
HP_PHBIO_IC_PC_LO 0.001 0.001 0.001 0.001
HP_PHBIO_IC_PC_HI
HP_NPHBIO_IC_PC_LO
HP_NPHBIO_IC_PC_HI
HP_MAC_TRANSLOC_RC_LO
HP_MAC_TRANSLOC_RC_HI
HP_HYD_RCINFILT_LO
HP_HYD_RCINFILT_HI
HP_HYD_SPEC_YIELD_LO
HP_HYD_SPEC_YIELD_HI
HP_HYD_POROSITY_LO
HP_HYD_POROSITY_HI
HP_FLOC_IC_LO
HP_FLOC_IC_HI
HP_FLOC_IC_CTOOM_LO
HP_FLOC_IC_CTOOM_HI
HP_FLOC_IC_PC_LO
HP_FLOC_IC_PC_HI
HP_SfDepthLo_LO
HP_SfDepthLo_HI
HP_SfDepthHi_LO
HP_SfDepthHi_HI
HP_SfDepthInt_LO
HP_SfDepthInt_HI
HP_PhosLo_LO
HP_PhosLo_HI
HP_PhosHi_LO
HP_PhosHi_HI
HP_PhosInt_LO
HP_PhosInt_HI
HP_FireInt_LO
HP_FireInt_HI

Count: 37 14 21 30 50 46 49 22 22
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Table 7.3.3. Soils.  Naive case: +/-25% change in parameter.  Compared to the  5-yr mean of the NOMINAL run output, 
if a simulation with a changed parameter resulted in at least a 1% change in the soil porewater TP concentration Performance 
Measure in an Indicator Region (IR), the (ParmChangeRun - NominalRun) (mg/L) difference is shown for that simulation & IR.  
Parameters are grouped by ecological module (as found in databases).

  TPpore_9   TPpore_8   TPpore_7   TPpore_6   TPpore_5   TPpore_4   TPpore_3   TPpore_2   TPpore_0
NOMINAL 0.002 0.003 0.005 0.011 0.021 0.060 0.059 0.011 0.011
GP_SOLOMEGA_LO
GP_SOLOMEGA_HI
GP_ALTIT_LO
GP_ALTIT_HI
GP_LATDEG_LO
GP_LATDEG_HI
GP_mannDepthPow_LO -0.001 -0.002 -0.001
GP_mannDepthPow_HI -0.001 -0.001 0.002
GP_mannHeadPow_LO 0.001 0.001
GP_mannHeadPow_HI -0.001 -0.002 0.001
GP_calibGWat_LO -0.001 -0.005 -0.003 -0.001 -0.001
GP_calibGWat_HI 0.004 0.004 0.001 0.001
GP_IDW_pow_LO
GP_IDW_pow_HI
GP_calibET_LO -0.001 -0.001 -0.001 -0.001 -0.002 -0.009 -0.002 -0.001 -0.001
GP_calibET_HI 0.001 0.002 0.002 0.002 0.006 0.005 0.002 0.002
GP_HYD_IC_SFWAT_ADD_LO
GP_HYD_IC_SFWAT_ADD_HI
GP_HYD_IC_UNSAT_ADD_LO
GP_HYD_IC_UNSAT_ADD_HI
GP_HYD_ICUNSATMOIST_LO
GP_HYD_ICUNSATMOIST_HI
GP_DetentZ_LO -0.001
GP_DetentZ_HI
GP_MinCheck_LO
GP_MinCheck_HI
GP_dispLenRef_LO -0.001 -0.001 0.003 0.006
GP_dispLenRef_HI 0.001 -0.003 -0.004
GP_dispParm_LO 0.001 -0.003 -0.004
GP_dispParm_HI -0.001 -0.001 0.003 0.006
GP_SLRise_LO
GP_SLRise_HI
GP_ALG_IC_MULT_LO
GP_ALG_IC_MULT_HI -0.001
GP_alg_uptake_coef_LO -0.001 -0.001 -0.001 -0.001 -0.001 -0.003 -0.002 -0.001 -0.001
GP_alg_uptake_coef_HI 0.001 0.001 0.001 0.002 0.002 0.001 0.001
GP_ALG_SHADE_FACTOR_LO
GP_ALG_SHADE_FACTOR_HI 0.001
GP_algMortDepth_LO
GP_algMortDepth_HI
GP_ALG_RC_MORT_DRY_LO
GP_ALG_RC_MORT_DRY_HI -0.001
GP_ALG_RC_MORT_LO 0.001 0.001 0.001 0.003 0.003 0.001 0.001
GP_ALG_RC_MORT_HI -0.001 -0.001 -0.001 -0.002 -0.001
GP_ALG_RC_PROD_LO 0.001 0.001 0.001 0.001 0.003
GP_ALG_RC_PROD_HI -0.001 -0.001 -0.001 -0.001
GP_ALG_RC_RESP_LO
GP_ALG_RC_RESP_HI -0.001
GP_alg_R_accel_LO 0.001 0.001 0.002 0.004 0.004 0.001 0.001
GP_alg_R_accel_HI -0.001 -0.001 -0.001 -0.002 -0.004 -0.003
GP_AlgComp_LO 0.001 0.004
GP_AlgComp_HI -0.001
GP_ALG_REF_MULT_LO -0.001
GP_ALG_REF_MULT_HI
GP_NC_ALG_KS_P_LO 0.002
GP_NC_ALG_KS_P_HI -0.001
GP_alg_alkP_min_LO 0.001
GP_alg_alkP_min_HI -0.001
GP_C_ALG_KS_P_LO -0.001 -0.001 -0.001 -0.001 -0.001
GP_C_ALG_KS_P_HI 0.001 0.001 -0.001
GP_ALG_TEMP_OPT_LO -0.001 -0.001 -0.001 -0.001 -0.001
GP_ALG_TEMP_OPT_HI 0.001 0.001 0.002 0.003 0.005 0.001 0.001
GP_C_ALG_threshTP_LO -0.001 -0.001 -0.001 -0.003 -0.007 -0.005 -0.001 -0.001
GP_C_ALG_threshTP_HI 0.001 0.001 0.002 0.004 0.005 0.001 0.001
GP_ALG_C_TO_OM_LO -0.001 -0.002 -0.006 -0.006 -0.001 -0.001
GP_ALG_C_TO_OM_HI 0.001 0.001 0.001 0.004 0.006 0.001 0.001
GP_alg_light_ext_coef_LO
GP_alg_light_ext_coef_HI
GP_ALG_LIGHT_SAT_LO
GP_ALG_LIGHT_SAT_HI
GP_ALG_PC_LO 0.001 0.001 0.001 -0.001 -0.001
GP_ALG_PC_HI -0.001 -0.001 -0.001 -0.001 0.002
GP_DOM_RCDECOMP_LO -0.001 -0.001 -0.002 -0.004 -0.007 -0.016 -0.017 -0.003 -0.003
GP_DOM_RCDECOMP_HI 0.001 0.001 0.003 0.005 0.008 0.029 0.04 0.005 0.005
GP_DOM_DECOMPRED_LO -0.001 -0.001 -0.001 -0.001 -0.002 -0.004 -0.004 -0.001 -0.001
GP_DOM_DECOMPRED_HI 0.001 0.002 0.002 0.004 0.005 0.001 0.001
GP_calibDecomp_LO -0.001 -0.001 -0.002 -0.004 -0.007 -0.016 -0.017 -0.003 -0.003
GP_calibDecomp_HI 0.001 0.001 0.003 0.005 0.008 0.029 0.04 0.005 0.005
GP_DOM_decomp_coef_LO 0.009 0.011 0.017 0.025 0.039 0.107 0.115 0.022 0.022
GP_DOM_decomp_coef_HI -0.001 -0.002 -0.003 -0.007 -0.013 -0.028 -0.029 -0.005 -0.005
GP_DOM_DECOMP_POPT_LO 0.001 0.001 0.003 0.062 0.1 0.006 0.006
GP_DOM_DECOMP_POPT_HI -0.001 -0.007 -0.008 -0.001 -0.001
GP_sorbToTP_LO -0.001 -0.001 -0.001 -0.002 -0.003 -0.004 -0.003 -0.001 -0.001
GP_sorbToTP_HI 0.001 0.002 0.003 0.003 0.003 0.004 0.002 0.002
GP_IC_BATHY_MULT_LO
GP_IC_BATHY_MULT_HI
GP_IC_TPtoSOIL_MULT_LO -0.001 -0.002 -0.002 -0.004 -0.006 -0.01 -0.01 -0.003 -0.003
GP_IC_TPtoSOIL_MULT_HI 0.002 0.002 0.004 0.005 0.007 0.012 0.013 0.004 0.004
GP_IC_DOM_BD_MULT_LO 0.001 0.002 0.003 0.006 0.006 0.001 0.001
GP_IC_DOM_BD_MULT_HI -0.001 -0.001 -0.001 -0.002 -0.004 -0.01 -0.009 -0.002 -0.002
GP_IC_BulkD_MULT_LO -0.001 -0.002 -0.002 -0.004 -0.006 -0.009 -0.008 -0.003 -0.003
GP_IC_BulkD_MULT_HI 0.001 0.002 0.003 0.004 0.004 0.003 0.004 0.003 0.003
GP_IC_ELEV_MULT_LO -0.001 -0.001 -0.001 -0.002
GP_IC_ELEV_MULT_HI 0.001 0.002
GP_MAC_IC_MULT_LO 0.001 0.002 0.002 0.002 0.002 0.003 0.002 0.002
GP_MAC_IC_MULT_HI -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
GP_MAC_REFUG_MULT_LO
GP_MAC_REFUG_MULT_HI
GP_mac_uptake_coef_LO -0.001 -0.002 -0.004 -0.009 -0.018 -0.036 -0.036 -0.007 -0.007
GP_mac_uptake_coef_HI 0.009 0.01 0.012 0.015 0.018 0.035 0.043 0.013 0.013
GP_mann_height_coef_LO -0.001 -0.002
GP_mann_height_coef_HI 0.001 0.001 0.001
GP_Floc_BD_LO -0.001 -0.001 -0.002 -0.005 -0.005 -0.001 -0.001
GP_Floc_BD_HI 0.001 0.001 0.001 0.004 0.006 0.001 0.001
GP_FlocMax_LO -0.001 -0.001 -0.002 -0.005 -0.005 -0.001 -0.001
GP_FlocMax_HI 0.001 0.001 0.001 0.004 0.006 0.001 0.001
GP_TP_P_OM_LO -0.001
GP_TP_P_OM_HI 0.001
GP_Floc_rcSoil_LO 0.001 0.001 0.002 0.006 0.008 0.001 0.001
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Table 7.3.3, p. 2 of 2

GP_Floc_rcSoil_HI -0.001 -0.001 -0.001 -0.004 -0.004
GP_TP_DIFFCOEF_LO 0.002 0.004
GP_TP_DIFFCOEF_HI -0.001 -0.003 -0.002
GP_TP_K_INTER_LO 0.002 0.004 0.007 0.021 0.024 0.004 0.004
GP_TP_K_INTER_HI -0.001 -0.001 -0.001 -0.002 -0.005 -0.013 -0.012 -0.002 -0.002
GP_TP_K_SLOPE_LO -0.002 -0.001
GP_TP_K_SLOPE_HI 0.001 0.002
GP_WQMthresh_LO
GP_WQMthresh_HI
GP_PO4toTP_LO -0.001 -0.001 0.001 0.001 0.001 0.004
GP_PO4toTP_HI 0.001 0.001 -0.003
GP_TP_IN_RAIN_LO -0.001 -0.001 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001
GP_TP_IN_RAIN_HI 0.001 0.001 0.001 0.001 0.001 0.001 0.001
GP_PO4toTPint_LO 0.001
GP_PO4toTPint_HI -0.001 -0.001 -0.001
GP_TP_ICSFWAT_LO
GP_TP_ICSFWAT_HI
GP_TP_ICSEDWAT_LO -0.001 -0.001 -0.001 -0.001 -0.001
GP_TP_ICSEDWAT_HI 0.001 0.002
GP_TPpart_thresh_LO -0.001 -0.001 -0.001 0.002
GP_TPpart_thresh_HI 0.001 0.001 -0.001
GP_TP_DIFFDEPTH_LO -0.001 -0.004 -0.003
GP_TP_DIFFDEPTH_HI 0.002 0.003
GP_settlVel_LO 0.001 -0.002 -0.002
GP_settlVel_HI -0.001 -0.001 0.001 0.003
HP_ALG_MAX_LO 0.001 0.002 0.003 0.005 0.005 0.001 0.001
HP_ALG_MAX_HI -0.001 -0.001 -0.001 -0.002 -0.004 -0.003 -0.001 -0.001
HP_DOM_MAXDEPTH_LO -0.001 -0.001 -0.001 -0.002 -0.002 0.003 0.002 -0.001 -0.001
HP_DOM_MAXDEPTH_HI 0.001 0.001 0.002 0.002 0.001 -0.003 -0.002 0.001 0.001
HP_DOM_AEROBTHIN_LO -0.001 -0.001 -0.001 -0.002 -0.001
HP_DOM_AEROBTHIN_HI 0.001 0.001
HP_TP_CONC_GRAD_LO 0.004 0.005 0.001 0.001
HP_TP_CONC_GRAD_HI -0.001 -0.001 -0.001 -0.004 -0.003
HP_SALT_ICSEDWAT_LO
HP_SALT_ICSEDWAT_HI
HP_SALT_ICSFWAT_LO
HP_SALT_ICSFWAT_HI
HP_PHBIO_MAX_LO 0.003 0.004 0.006 0.007 0.008 0.017 0.023 0.006 0.006
HP_PHBIO_MAX_HI -0.001 -0.002 -0.003 -0.005 -0.007 -0.013 -0.013 -0.003 -0.003
HP_NPHBIO_MAX_LO -0.001 -0.001 0.001
HP_NPHBIO_MAX_HI -0.001
HP_MAC_MAXHT_LO -0.001 -0.001 -0.001 -0.003 -0.001
HP_MAC_MAXHT_HI 0.001 0.001 0.002 0.002
HP_NPHBIO_ROOTDEPTH_LO 0.001 0.001
HP_NPHBIO_ROOTDEPTH_HI -0.001 -0.001 -0.001
HP_MAC_MAXROUGH_LO -0.001
HP_MAC_MAXROUGH_HI 0.001
HP_MAC_MINROUGH_LO -0.001
HP_MAC_MINROUGH_HI 0.001
HP_MAC_MAXLAI_LO -0.001 -0.001 -0.001 -0.001 -0.002 -0.004 -0.002 -0.001 -0.001
HP_MAC_MAXLAI_HI 0.001 0.001 0.001 0.002 0.003 0.001 0.001
HP_MAC_MAXCANOPCOND_LO
HP_MAC_MAXCANOPCOND_HI
HP_MAC_CANOPDECOUP_LO
HP_MAC_CANOPDECOUP_HI
HP_MAC_TEMPOPT_LO -0.001 -0.002 -0.004 -0.008 -0.016 -0.033 -0.033 -0.006 -0.006
HP_MAC_TEMPOPT_HI 0.004 0.005 0.007 0.008 0.01 0.024 0.031 0.007 0.007
HP_MAC_LIGHTSAT_LO
HP_MAC_LIGHTSAT_HI
HP_MAC_KSP_LO -0.001 -0.002 -0.008 -0.009 -0.001 -0.001
HP_MAC_KSP_HI 0.001 0.001 0.007 0.012 0.001 0.001
HP_PHBIO_RCNPP_LO 0.003 0.004 0.005 0.007 0.008 0.017 0.023 0.006 0.006
HP_PHBIO_RCNPP_HI -0.001 -0.002 -0.002 -0.005 -0.007 -0.013 -0.013 -0.003 -0.003
HP_PHBIO_RCMORT_LO -0.001 -0.001 -0.001 0.001
HP_PHBIO_RCMORT_HI 0.001 0.001
HP_MAC_WAT_TOLER_LO 0.001 0.002 0.001 0.001 0.001 0.001
HP_MAC_WAT_TOLER_HI -0.001 -0.001 -0.001 -0.001
HP_MAC_SALIN_THRESH_LO
HP_MAC_SALIN_THRESH_HI
HP_PHBIO_IC_CTOOM_LO -0.001 -0.002 -0.001
HP_PHBIO_IC_CTOOM_HI 0.001
HP_NPHBIO_IC_CTOOM_LO -0.001
HP_NPHBIO_IC_CTOOM_HI 0.001
HP_PHBIO_IC_PC_LO 0.003 0.004 0.005 0.007 0.008 0.015 0.021 0.006 0.006
HP_PHBIO_IC_PC_HI -0.001 -0.002 -0.002 -0.005 -0.007 -0.012 -0.012 -0.003 -0.003
HP_NPHBIO_IC_PC_LO -0.001
HP_NPHBIO_IC_PC_HI
HP_MAC_TRANSLOC_RC_LO -0.001
HP_MAC_TRANSLOC_RC_HI
HP_HYD_RCINFILT_LO
HP_HYD_RCINFILT_HI
HP_HYD_SPEC_YIELD_LO 0.001 -0.003
HP_HYD_SPEC_YIELD_HI -0.001 -0.001 -0.001 0.001 0.001
HP_HYD_POROSITY_LO -0.001 -0.001 -0.001 -0.001 -0.004 -0.002 -0.001 -0.001
HP_HYD_POROSITY_HI -0.001 0.001 0.001 0.001 0.002 0.003 0.001 0.001
HP_FLOC_IC_LO
HP_FLOC_IC_HI
HP_FLOC_IC_CTOOM_LO
HP_FLOC_IC_CTOOM_HI
HP_FLOC_IC_PC_LO
HP_FLOC_IC_PC_HI
HP_SfDepthLo_LO
HP_SfDepthLo_HI
HP_SfDepthHi_LO
HP_SfDepthHi_HI
HP_SfDepthInt_LO
HP_SfDepthInt_HI
HP_PhosLo_LO
HP_PhosLo_HI
HP_PhosHi_LO
HP_PhosHi_HI
HP_PhosInt_LO
HP_PhosInt_HI
HP_FireInt_LO
HP_FireInt_HI

Count: 60 68 65 67 85 121 112 64 64
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Table 7.3.4.  Most 'important' parameters for different ecological process modules as understood from the Naive case.
Note that the Naive case does not employ "realistic" changes to parameters, nor does it consider the broader
spatial characteristics of the entire greater Everglades.  A larger number of parameters than shown in this table
are evaluated in the "Informed" phase of the NIS multi-scale sensitivity analysis.
 "Yes" = affects performance in potentially significant manner at various spatial locations/scales
 "Potential" = in "top 20", w/ observable affect on performance at various spatial locations/scales 

Parameter

Hydrology Surface 
water 
quality

Soil water 
quality

State of knowledge
GP_calibET yes potential yes Evapotranspiration rates known to Level II - III
GP_calibGWat yes potential Subsurface groundwater flows known to Level I - II
HP_HYD_SPEC_YIELD yes Horizontal and vertical distributions of surficial storage = Level I - III
GP_IC_ELEV_MULT yes Land surface elevations known to Level III, some Level II
HP_MAC_MAXLAI yes Maximum LAI is Level II - III, but actual LAI is Level I - II
HP_HYD_POROSITY yes Horizontal and vertical distributions of surficial storage = Level I - III
GP_MAC_IC_MULT yes potential Initial macrophyte biomass known to Level I - III
HP_NPHBIO_ROOTDEPTH yes Depth of principal root mass known to Level II
HP_MAC_MINROUGH yes Minimum Manning's N known to Level I -II, actual roughness is closer to Level I
GP_PO4toTP yes Ratio of bio-available to total phosphorus Level II, model value is Level I
HP_ALG_MAX potential yes Maximum periphyton biomass is Level II - III, actual biomass is Level I - II
GP_TPpart_thresh yes Settling physics Level III, actual particulate and microbial dynamics Level I
GP_DOM_DECOMP_POPT potential yes yes Laboratory constants known to Level III, scaled constants Level II
GP_DOM_RCDECOMP yes yes Laboratory constants known to Level III, scaled constants Level II
GP_C_ALG_threshTP potential yes potential Laboratory and field experiments for periphyton TP threshold are Level III
GP_ALG_TEMP_OPT yes Periphyton temperature optimimum known to Level III, correlated to Level I - II growth rate
GP_alg_R_accel potential yes Biochemical cause for periphyton loss at high TP unknown; proxy here is calibrated
GP_ALG_RC_MORT yes Maximum specific mortality rate known to Level II; field rates known to I - III
GP_ALG_PC yes Phosphorus:Carbon periphyton ratio known to Level II
GP_C_ALG_KS_P yes potential Laboratory constants known to Level III, scaled constants Level II
HP_MAC_TEMPOPT potential yes Macrophyte temperature optimimum known to Level III, correlated to Level I - II growth rate
HP_PHBIO_MAX yes Maximum macrophyte biomass is Level II - III, actual biomass is Level I - II
HP_PHBIO_RCNPP potential yes Maximum rate of macrophyte net primary production known to Level II, actual is level I - III
HP_PHBIO_IC_PC yes Phosphorus:Carbon macrophytes ratio known to Level II
GP_TP_K_INTER yes Laboratory constants known to Level III, scaled constants Level II
GP_IC_TPtoSOIL_MULT yes Initial soil TP concentration known to level II - III
GP_IC_BulkD_MULT potential yes Initial (constant) soil bulk density known to level II - III
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7.3.6 Figures: sensitivity analyses 
Five figures follow on the next five pages. 
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Figure 7.3.1.  Conceptual model of approach to sensitivity analysis of complex system simulations. ELM v2.5: Uncertainty
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Fig.7.3.2.Basin/Indicator-Region configuration of model used in sensitivity analysis.
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Figure 7.3.3a.  Hydrology Naive case: +/- 25% change in parameter.  Lowest (most negative) output differences of Performance Measure compared to the 5-yr mean of the NOMINAL run output.
The twenty most-sensitive parameters are shown.  See Figure 1 for definition & locations of the Indicator Regions 3 - 9 that are referred to in the legend (Basin 0 is entire domain).

Figure 6.3.3b.  Hydrology Naive case: +/- 25% change in parameter.  Highest (most positive) output differences of Performance Measure compared to the 5-yr mean of the NOMINAL run output.
The twenty most-sensitive parameters are shown.  See Figure 1 for definition & locations of the Indicator Regions 3 - 9 that are referred to in the legend (Basin 0 is entire domain).

Hydrology. Naive case: Decreased surface water depth in response to +/-25% change in parameter.

-0.25

-0.2

-0.15

-0.1

-0.05

0

H
P

_A
L

G
_M

A
X

_H
I

H
P

_P
H

B
IO

_R
C

M
O

R
T

_H
I

G
P

_a
lg

_R
_a

cc
el

_H
I

G
P

_A
L

G
_C

_T
O

_O
M

_L
O

G
P

_C
_A

L
G

_t
h

re
sh

T
P

_L
O

G
P

_I
C

_D
O

M
_B

D
_M

U
L

T
_L

O

H
P

_M
A

C
_M

A
X

R
O

U
G

H
_L

O

G
P

_m
an

n
_h

ei
g

h
t_

co
ef

_L
O

H
P

_M
A

C
_M

A
X

H
T

_L
O

H
P

_M
A

C
_M

IN
R

O
U

G
H

_L
O

G
P

_m
an

n
H

ea
d

P
o

w
_L

O

G
P

_M
A

C
_I

C
_M

U
L

T
_H

I

H
P

_N
P

H
B

IO
_R

O
O

T
D

E
P

T
H

_H
I

G
P

_m
an

n
D

ep
th

P
o

w
_L

O

H
P

_M
A

C
_M

A
X

L
A

I_
H

I

H
P

_H
Y

D
_P

O
R

O
S

IT
Y

_H
I

G
P

_I
C

_E
L

E
V

_M
U

L
T

_H
I

G
P

_c
al

ib
G

W
at

_H
I

H
P

_H
Y

D
_S

P
E

C
_Y

IE
L

D
_H

I

G
P

_c
al

ib
E

T
_H

I

Parameter_[HI_or_LO]D
if

fe
re

n
ce

 f
ro

m
 5

-y
r 

m
ea

n
 N

o
m

in
al

 c
as

e 
(m

et
er

s)

   SfWat_9

   SfWat_8

   SfWat_7

   SfWat_6

   SfWat_5

   SfWat_4

   SfWat_3

   SfWat_0
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0

0.05

0.1

0.15

0.2

0.25

G
P

_c
al

ib
E

T
_L

O

G
P

_c
al

ib
G

W
at

_L
O

H
P

_H
Y

D
_S

P
E

C
_Y

IE
L

D
_L

O

G
P

_m
an

n
D

ep
th

P
o

w
_H

I

G
P

_I
C

_E
L

E
V

_M
U

L
T

_L
O

H
P

_M
A

C
_M

A
X

L
A

I_
L

O

H
P

_H
Y

D
_P

O
R

O
S

IT
Y

_L
O

G
P

_m
an

n
H

ea
d

P
o

w
_H

I

G
P

_M
A

C
_I

C
_M

U
L

T
_L

O

H
P

_N
P

H
B

IO
_R

O
O

T
D

E
P

T
H

_L
O

H
P

_M
A

C
_M

IN
R

O
U

G
H

_H
I

G
P

_m
ac

_u
p

ta
ke

_c
o

ef
_H

I

G
P

_m
an

n
_h

ei
g

h
t_

co
ef

_H
I

H
P

_M
A

C
_M

A
X

H
T

_H
I

G
P

_D
O

M
_d

ec
o

m
p

_c
o

ef
_L

O

G
P

_D
O

M
_D

E
C

O
M

P
_P

O
P

T
_L

O

H
P

_M
A

C
_M

A
X

R
O

U
G

H
_H

I

G
P

_A
L

G
_T

E
M

P
_O

P
T

_H
I

H
P

_P
H

B
IO

_R
C

M
O

R
T

_L
O

G
P

_m
ac

_u
p

ta
ke

_c
o

ef
_L

O

Parameter_[HI_or_LO]

D
if

fe
re

n
ce

 f
ro

m
 5

-y
r 

m
ea

n
 N

o
m

in
al

 c
as

e 
(m

et
er

s)

   SfWat_9

   SfWat_8

   SfWat_7

   SfWat_6

   SfWat_5

   SfWat_4

   SfWat_3

   SfWat_0

ELM v2.5: Uncertainty



Figure 7.3.4a.  Surface water TP Naive case: +/- 25% change in parameter.  Lowest (most negative) output differences of Performance Measure compared to the 5-yr mean of the NOMINAL run output.
The twenty most-sensitive parameters are shown.  See Figure 1 for definition & locations of the Indicator Regions 3 - 9 that are referred to in the legend (Basin 0 is entire domain).

Figure 6.3.4b.  Surface water TP Naive case: +/- 25% change in parameter.  Highest (most positive) output differences of Performance Measure compared to the 5-yr mean of the NOMINAL run output.
The twenty most-sensitive parameters are shown.  See Figure 1 for definition & locations of the Indicator Regions 3 - 9 that are referred to in the legend (Basin 0 is entire domain).

Surface water TP. Naive case: Decreased surface water TP concentration in response to +/-25% change in 
parameter. (Note: output precision = 0.001 mg/L, or 1 ppb)
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Figure 7.3.5a.  Soils Naive case: +/- 25% change in parameter.  Lowest (most negative) output differences of Performance Measure compared to the 5-yr mean of the NOMINAL run output.
The twenty most-sensitive parameters are shown.  See Figure 1 for definition & locations of the Indicator Regions 3 - 9 that are referred to in the legend (Basin 0 is entire domain).

Figure 6.3.5b.  Soils Naive case: +/- 25% change in parameter.  Highest (most positive) output differences of Performance Measure compared to the 5-yr mean of the NOMINAL run output.
The twenty most-sensitive parameters are shown.  See Figure 1 for definition & locations of the Indicator Regions 3 - 9 that are referred to in the legend (Basin 0 is entire domain).

Soil TP. Naive case: Decreased soil porewater TP concentration in response to +/-25% change in parameter. 
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7.4 Model complexity 

7.4.1 Parameters and complexity5 
Because the ELM is a spatially distributed model of the fundamental ecosystem 
properties of a regional system, it necessarily uses a relatively large number of 
parameters to define rates, initial conditions, and various other system attributes.  The 
parameters are not “hard-coded” into the model source code, but organized within user-
friendly databases.  The regional nature of this model encompasses a wide range of 
physical and biological characteristics.  For example, a single parameter that is spatially 
distributed can take on a wide range of values – the important parameter of hydraulic 
conductivity varies over several orders of magnitude across the greater Everglades 
domain (see Data Chapter).  To accurately communicate the data requirements of the 
model, the parameters should be classified according to their spatial distributions, 
according to their importance in influencing model results, and according to the degree to 
which they can be supported by available research.   

Their spatial distribution is a fundamental component of these data.  There are no more 
than approximately 40 individual parameters that are important to model results and that 
impose data acquisition needs.  Some of these parameters are distributed in some spatial 
context. The spatial distributions involve those that are spatially-constant, those that are 
distributed among specific habitat types across the landscape, and parameters that are 
distributed among individual grid cells across the landscape. 

While there are decades of monitoring and research activities in the greater Everglades, 
the past 5-10 years has dramatically increased our knowledge of system properties.  Some 
of the parameters in use in the current ELM v2.5 have not been updated from ELM v2.1, 
and we anticipate that the next version of ELM (v3.0) will advance our synthesis of this 
base of knowledge of the Everglades. 

7.4.1.1 Global parameters 
 As described in the Data Chapter, global parameters are those that apply uniformly 
throughout the spatial domain of the model. Of the 70 global parameters, 30 are unused 
or not intended to be modified except in model sensitivity experiments.  The sensitivity 
analysis of this Chapter shows that a total of 23 of the 70 global parameters have the 
potential to affect, to at least a very small but observable extent, the hydrologic and water 
quality Performance Measures being considered6.  Six of those 23 potentially- important 
parameters have significant effects on multiple Performance Measures. 

7.4.1.2 Habitat-specific parameters 
As described in the Data Chapter, habitat-specific parameters are those that apply only to 
the specified habitat type within spatial domain of the model.  Of the 40 habitat-specific 

                                                 
5  Some of the text discussion here is also found in the Model Parameters section of the Data 
Chapter. 
6  Those performance measures are water depth, and TP concentration in surface and in pore 
water.   
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parameters, 5 are unused in this version of the model. The sensitivity analysis of this 
Chapter shows that a total of 13 of the 40 habitat-specific parameters have the potential to 
affect, to at least a very small but observable extent, the hydrologic and water quality 
Performance Measures being considered7.  Of those 13 “important” parameters, one (1) 
has significant effects on multiple Performance Measures. 

While each of the 40 habitat-specific parameters may have unique values for each of 28 
habitats considered in the model (i.e., 1120 potentially unique values), such unique-by-
each-habitat distributions do not exist for any of the parameters.  The actual number of 
unique parameter values in the entire matrix is less than 140, with the most complex 
distribution of a single parameter across habitats having unique values for less than half 
of the habitats.  When considering only the 13 “important” parameters, the actual number 
of unique values is 64, across all 28 habitats.  Finally, only half (14) of the total number 
of habitats comprise >90% of the region of the ELM domain.  Thus, in general, there is, 
in total, on the order of several dozen unique-by-habitat values that may be important to 
quantify for model application. 

Of those parameters that we do assign unique values, basic field observations are used to 
support the parameter values.  Generally, habitat-distributions of parameters are limited 
to differences among broadly defined ecosystem types involving sedge, forest, savannah, 
and scrub type habitats.  Within an ecosystem type, any (usually limited) variation 
employs simple field-supported modifications of parameters according to the following: 
1) slight modifications of maximum macrophyte biomass and related parameters along a 
gradient (e.g., the 3 cattail habitats of high, medium, and low density), 2) replication of 
data from one habitat type to values for a similar habitat, differing in one or two primary 
attributes (e.g., from a simplistic perspective, Juncus and Cladium could differ primarily 
in salt tolerance, with some limited structural parameter differences), and 3) specific field 
research and monitoring data that supports the use of distinctions among the attributes of 
different habitats.   

Instead of supporting a parameter database that includes such a large number (28) of 
habitat types for 40 parameters (in a 2D array of parameters), we could obtain the same 
or similar model results in the current water-quality oriented version by simply not 
including all of the fundamental habitat types.  This is attractive in terms of reducing the 
apparent complexity of the ELM via a smaller 2D array of parameters, but would do little 
to decrease the actual complexity in terms of the data that currently populates the 2D 
array of parameters. As discussed, the large majority of parameter values are the same for 
multiple habitat types, and thus the numerical complexity of such a large array is never 
realized.  Moreover, a reduction of the number of habitat types would require increased 
maintenance of spatial and parameter databases, as future model updates include 
increased levels of differentiation among ecological dynamics of soils, periphyton, 
macrophytes, and habitat succession. Whereas we can currently simply improve the 
parameter values as data become available, the alternative is to incrementally modify 
both the habitat type map and the number of records supported in the database.  The 
bottom line: from a model development and refinement perspective, it is attractive to 

                                                 
7  Ibid. 
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maintain the two-dozen habitat types currently defined as the minimum (that only begins) 
to represent the regional heterogeneity across the greater Everglades.   

We have taken a simple approach that generally assumes a high degree of similarity 
among most habitats, while providing a database mechanism to recognize differences in 
attributes where they are important, either currently or in the future.  Regardless of the 
database implementation of habitat-specific parameters, that assumption of broadly-based 
habitat-similarity will remain until increased knowledge supports more refined 
distinctions in the heterogeneity of the greater Everglades.   

The ELM “history-matching” performance was documented (see Model Performance 
Chapter) by a variety of analyses of an historical simulation that used single-estimates of 
parameters.  We recognize that it can be beneficial to express the relative performance 
uncertainty of the model by employing distributions of uncertain parameter estimates.  
We plan on future refinements that will explore methods of expressing the model results 
in probabilistic outcomes under a range of parameter estimates.   

7.5 Model numerical dispersion 
There are a variety of mechanisms that result in water movement and transport of 
dissolved/suspended matter in hydrologic systems, and they can be conceptualized in two 
basic forms: advection and diffusion.  Advection results from a unidirectional flow, such 
as water coursing down a river.  This action of an advected water mass does not change 
the concentration of a mass of a solute within the water parcel, and thus does not affect 
the gradient of the solute within the system as the water parcel moves downstream.  
Diffusion can generally be considered to be the movement of mass due to random water 
motion or mixing (Chapra 1997).  Molecular diffusion results from the random 
movement of water molecules, while turbulent diffusion is a similar type of random 
movement that occurs at much larger scales such as eddies. The effect is to distribute 
mass of solutes in the system, smoothing the gradient of concentration.  The process of 
dispersion is closely related to diffusion in that dispersion also results in the lateral spread 
of the mass or concentration of the solute in the system. One may consider dispersion to 
be a special class of diffusion, at least with respect to the results of the processes. 
Dispersion, however, is the result of velocity differences across space, as opposed to  
random motion of water.  It may be apparent that the spatial and temporal scale of 
observing, or modeling, the system is a critical characteristic that must be considered 
when exploring the contributions of these flux processes. 

In dynamic modeling of flowing, spatially distributed (e.g., gridded) systems, the 
numerical solution technique has an effect on the accuracy of the model prediction.  Use 
of an explicit, finite difference technique (such as used in ELM), is known to result in 
numerical errors that have the effect of dispersing the concentration of a solute in the 
system (Chapra 1997), (many others).  Note that numerical dispersion (errors) can be 
assumed to have the same effect on solute gradients that real diffusion/dispersion in the 
observed system.  

This numerical dispersion (error) is very sensitive to scale: numerical dispersion is 
increased by increasing the size of the model grid, and/or by increasing the number of 
temporal iterations per unit of time (i.e., decreasing the model time step, dt).  
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Additionally, this spatio-temporal relationship is a non-linear function of the modeled 
system’s water velocity.  Figure 7.5.1 demonstrates this relationship for scales that are 
pertinent to the ELM, which uses a 2 hour time step when implemented with a 1 km 
square grid.  There are two important points to note. 1) The Everglades operates at 
velocities that are likely well under 5 cm•sec-1, with measured velocities (Lee and Carter 
1999, Ball and Schaffranek 2000, Schaffranek and Ball 2000, DBEnvironmental 2002, 
Noe et al. in press) in northern and southern regions of the Everglades generally less than 
1-2 cm•sec-1, (though Ball and Schaffranek (2000) measured a peak of 4.7 cm•sec-1 
downstream of outflows from the L-31W canal apparently due to a pump test of the S-
332D structure and releases due to tropical storm Harvey (Schaffranek and Ball 2000).   
2)  At the 3000 m model grid scale (slightly smaller than that of the 2 mile SFWMM), 
numerical dispersion is very high at all velocities. 

While these numerical diffusion estimates are useful to understand the magnitude of the 
potential effect on ELM results, we (previously) implemented the model (ELM v2.1) at 
three different spatial scales in order to evaluate the actual effect on ELM results (Fitz et 
al. 2002).  Using model implementations at 100, 500, and 1000 m grid scales in Water 
Conservation Area 2A, we showed that the highest numerical dispersion, at a 1000 m grid 
scale length, is of the same order of magnitude as dispersion estimates for a wetland 
system such as this.  DBEnvironmental (2002) provided estimates of various hydraulic 
parameters that were obtainable from tracer dye studies in the Cell 4 wetlands of STA-
1W.  One of the estimated parameters they provided was the dispersion number Dn , 
which is a function of the dispersion coefficient D(m2•d-1), the nominal water velocity u 
(m•d-1), and the pathlength of flow l (m) as follows: 
D = Dn •u • L  

 They reported Dn  ranging from 1.25 – 2.75 (dimensionless) from the Cell 4 dye study.  
Using a mean measured velocity for (for a different period but similar hydraulic 
conditions) of 0.54 cm•sec-1, a path length of about 3000 m, a  dispersion coefficient D 
would be roughly 1.5 – 4 million m2•d-1.  While these somewhat incomplete data could 
possibly represent an overestimate of dispersion, it was clear that the numerical 
dispersion in the regional 1km2 ELM  (ca. 200,000 m2•d-1 for a similar velocity) did not 
introduce significant bias to predictions of gradient dynamics, as the actual dispersion is 
at least the same order of magnitude as numerical dispersion in the 1km2 ELM 
applications. 

Because of this uncertainty in the magnitude of dispersion, we expanded (from ELM 
v2.1) the model’s purely advective equations of flow, including a dispersion component.  
The ELM v2.5 Anti-Numerical Dispersion (AND, see Model Structure Chapter) 
algorithm is based simply on the well-known equation describing the behavior of the 
explicit solution technique.   The AND was expanded to include the true dispersion 
estimates based on the equation (Wool et al. in press):  

dMi ,k

dt
=

E
i , j

t( )• A
i , j

L
i , j

Cj,k − Ci, k( )
 

where: 

Mi,k =  mass of nutrient "k" in cell "i", g 
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Ci,k, Cj,k = concentration of nutrient "k" in cells "i" and "j", g/m3 (mg/L) 

Ei,j =  dispersion coefficient (time function) for exchange "i,j", m2/day 

Ai,j =  interfacial area shared by cells "i,j", m2 

Li,j =  mixing length between cells "i,j", m 

With this simple algorithm, the degree of (numerical) dispersion in ELM can be 
maintained independent of model grid scales (using the length scale parameter), and the 
velocity-varying actual dispersion can be proscribed with the dispersion coefficient.  
However, this remains a relatively coarse “calibration knob”, as significantly more field-
based evaluations are necessary to better estimate the true magnitude of dispersion under 
Everglades conditions.    
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7.5.1 Figures: dispersion 
One Figure follows this page. 



Figure  7.5.1.   Calculated numerical dispersion and Courant lambda of finite difference models  at different  time steps and different (regular) grid scales.  Courant numbers >1.0 have a tendency towards instability in the hydrologic flux solutions.
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7.6 Model “validation”  
It is uncertain that a classical “validation” process is required to demonstrate the utility of 
models. Validation is no longer considered the most credible way to evaluate model 
performance (Kleindorfer et al. 1998).  “Verification and validation of numerical models 
of natural systems is impossible” (Oreskes et al. 1994).  Logically, aka (Popper 1959), 
this appears to be true.  Others (Konidow and Bredehoeft 1992, Beven 1993, Rastetter 
1996) agree.  However, it does not appear necessary to “validate” models. To build 
confidence in the models’ utility, one needs to demonstrate that it performs in a manner 
consistent with objectives.  A major utility of process-based models such as ELM is in 
synthesis of accumulated knowledge.  Through this synthesis, we gain understanding of 
the system.  And develop a self-consistent synthesis of the complex interactions in the 
bio-physical-chemical landscape (Rastetter 1996).  With increasing knowledge of the 
system, and increasing confidence in the model performance for particular objectives, we 
can think about making projections of potential ecological (or hydrological) responses to 
external change.  But models of complex systems – whether they are simple black-boxed 
numerical interpretations such as the DMSTA8, or complex numerical interpretations 
such as ELM, SFWMM, ATLSS9 models, Global Climate Models, – are not going to be 
“accurate” predictors of the future.  These models still can be credible tools for 
evaluating potential scenarios of change.  A credible, if imperfect, model is far better than 
reductionist “best guesses” when embarking on complex system changes – such as the 
restoring the Everglades, or ameliorating CO2 increases in the atmosphere.   

Very important for achieving credibility of a model is the demonstration of sufficiently 
high levels of performance under a wide range of conditions (external and internal). The 
longer the time scale over which observations are available for comparison, relative to the 
predictive time scales of the model, the more credible the model. The (previous version) 
ELM v2.1 simulated the historical period from 1979 – 1995, encompassing a wide range 
of drought and flooding conditions, with widely varying phosphorus inputs (ELM_Team 
2002).  As part of the update to ELM v2.5, we acquired new 1996-2000 data that can be 
used to "validate10" ELM (see Model Performance Chapter); however, we primarily offer 
those analyses as further demonstrations of the credibility of this model as a potential 
forecasting tool. In the Model Performance Chapter, we presented an evaluation of the 
performance of ELM under the new and extended forcing data, demonstrating that the 
model was validated in the “classical” sense.  However, even though such an update 
indicated consistent -or better - levels of model performance in both periods of time, the 
process in itself did not sufficiently dictate “trust” in the model reliability. Most valuable 
for enhancing any model credibility would be the introduction of some suite of external 
inputs that are very different from those observed in prior years that have been used.  
However, the additional years appended onto the ELM simulation period did not appear 
to have any such dramatic change in external forcings, i.e. that extended beyond that of 
the past variability.   In actuality, this ‘96-’00 extension to ELM v2.5 was merely a part 
                                                 
8  Dynamic Model of STAs, http://wwwalker.net/dmsta/index.htm 
9  Across Trophic Level System Simulation, http://atlss.org 
10  sensu the traditional or classical use of the term 



ELM v2.5: Uncertainty 
 

7-35 
 

of the process of refining a model: an extended synthesis of new data, and enhancing the 
model performance relative to objectives.   

An important part of a model evaluation is how effective the code logic is, and how 
effectively it is parameterized to meet the performance goals.  In past comments on ELM, 
a reviewer pointed out that there could be other combinations of parameters that could 
provide a good model fit for TP concentration in the surface water.  Indeed, any model 
with a few parameters or more can possibly have more than one combination of 
parameters to achieve a same/similar statistical fit of the model to observed data for one 
particular target variable.  Fine tuned parameter sets for model calibrations are never 
unique (Spear 1997). It is likely that another combination of parameters could be found 
that will result in comparable performance of ELM predictions of TP concentration in the 
water column.  However, in our testing of the model performance to different parameters, 
we explicitly evaluate more than just a single target variable to ensure that other 
components of this complex, interactive system remain within targeted boundaries.  Thus, 
it is important to evaluate whether the proper mechanisms are responsible for model 
predictions.    

Recently there has been significant discourse on what is truly meant by “model 
validation”, and the means by which to communicate the level of trust in the application 
of a particular model.  Model validations include both conceptual validity and operational 
validation (Rykiel 1996, Parker et al. 2002). Conceptual validation checks if the theories, 
hypothesis, assumptions, system structures and processes underlying the model are sound 
and justifiable. Operational validation tests how well the model mimics the system. It 
does not, however, guarantee that the mechanisms contained in the model are 
scientifically complete and correct (Rykiel 1996).  To re-iterate, we argue that it is 
impossible to validate models  because the natural system is open and constantly 
evolving (Oreskes et al. 1994, Rastetter 1996, Oreskes 1998, Haag and Kaupenjohann 
2001). As previously indicated, a simple dictum is operative: Models can only be 
falsified; they cannot be validated (sensu Popper 1959). 

Despite this discourse on the logic associated with traditional validation, we have 
previously shown the ELM to be validated in this traditional sense (Model Performance 
Chapter).  However, after a single parameter or equation is modified  (in order to expand 
Performance Measures beyond water quality, or to improve water quality performance), 
the model will no longer be “validated” in the strict sense of unchanged models tested 
against ever-increasing extents of boundary conditions.  Instead, we need to evaluate how 
consistently the model performs under an increasing range of conditions; adding 6 
months, one year, or five years to a model’s Period of Record does not necessarily 
enhance credibility.  Most important to enhanced model credibility is a demonstration of 
consistent, unbiased performance under very new boundary condition forcings (such  as 
the 1994-95 high water years, or 1990 drought and associated changes in flows and 
loads).     

Models are used to provide synthesis, reveal  system properties, and outline system 
behavioral possibilities (Joegensen et al 1995; Rastetter, 1996; Haag and Kaupenjohann, 
2001). It is the communication with model stakeholders that is  essential to effect model 
validation and conformance with its intended purpose and performance criteria 
(Korfmacher 1995, Kleindorfer et al. 1998, Parker et al. 2002). ELM will be constantly 
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updated and evolve, but it will not be "validated" under all conditions.   Nor will other 
models. 
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